L1 μ trigger rates and performance in ORCA 8.13

Ivan Mikulec Institute of HEP Vienna 11 October 2005 CMS PRS/μ meeting

L1 µ rate calculations

- Progress preparing the production of weighted samples too slow
- July: Sridhara Dasu produced 10M plain min. bias events at Wisconsin - sufficient statistics to estimate L1 rates to 10%-20% up to any reasonable p_T threshold >August-September: Jorge Troconiz produced GMT root trees from them with ORCA 8.7.3 (directly at Wisconsin -
- difficult conditions)
- First results shown by Slava Valuev at CMS week on 20 September

L1 µ rate calculations

- Rates are calculated from trigger probabilities analytically (Hannes: CMS Note 2002/042)
- No need for real pile-up:
 - Its effect has been shown to be small with μ 's (e.g. Hannes' thesis)
- Care has to be taken not to recount same μ 's Progress since CMS week:
 - All 10M events used
 - DTTF ghosts appropriately accounted for

Method

- Using effective BX rate of 32 MHz
- Using average number of interactions per BX:
 - 3.5 for $L=2x10^{33}$
 - 17.3 for L= 10^{34}
- \rightarrow Accept quality bits $Q_{GMT} \ge 4$ for single muons and Q_{GMT} =3 or ≥5 for dimuons
- Each bunch crossing is considered as a separate event (DTTF ghosts)
- In dimuon rates, probabilities of exactly 1 muon above threshold are combined to take into account pile-up analytically

Comparison with DAQ TDR: 1μ

11 October 2005

Comparison with DAQ TDR: 2μ

1_µ rates barrel/endcaps

barrel: $0 < |\eta| < 1.04$

11 October 2005

I. Mikulec: L1 mu rates and performance

barrel: $0 < |\eta| < 1.04$

barrel

Plots by Belen Lasanta, Jorge Troconiz

1μ rates $\eta < 2.4$

> No contribution from 2.1< $|\eta|$ <2.4

11 October 2005

I. Mikulec: L1 mu rates and performance

whole detector: $0 < |\eta| < 2.4$

Plots by Belen Lasanta, Jorge Troconiz

whole detector: $0 < |\eta| < 2.4$

> Contribution from 2.1< $|\eta|$ <2.4 only at p_T<4GeV

11 October 2005

I. Mikulec: L1 mu rates and performance

whole detector: $0 < |\eta| < 2.4$

9

Numerical rate comparison

L=2x10 ³³	Single μ p _T ≥14 GeV		Di μ p _T ≥3 GeV		
	η <2.1	η <2.4	η <2.1	η <2.4	
DAQ-TDR	2.7		0.9		
new	1.8 ± 0.1	1.9 ± 0.1	1.4 ± 0.1	3.0 ± 0.2	kHz

L=10 ³⁴	Single μ p _T ≥20 GeV		Di μ p _T ≥5 GeV		
	η <2.1	η <2.4	η <2.1	η <2.4	
DAQ-TDR	6.2		1.7		
new	4.3 ± 0.5	4.3 ± 0.5	2.2 ± 0.3	2.3 ± 0.3	kHz

Statistical precision fully sufficient up to much higher thresholds

11 October 2005

Comments on rates

Single muon rates seem to be better than at DAQ-TDR at all p_{T} -thresholds:

- Generated rates agree
- All trigger components better just normalisation?
- Dimuon rates slightly higher (by ~30%) at nominal thresholds - seems to be a result of higher generated rates
- \succ In dimuon rates at high p_T-thresholds, generated and measured rates are much higher than in DAQ TDR
- Agreement in all points with Belen/Jorge, some differences with Sridhara (see his talk at Fermilab 6 Oct e.g. 1μ at high luminosity)

Performance check with ORCA 8.13.0

> Last performance check presented in PRS/ μ meeting on May 24 (ORCA 8.8.0) Now compare ORCA 8.13.0 with ORCA 8.7.3 \sim Using single muons with 5<p_T<100 GeV generated with OSCAR 3.6.0 Main change after 8.7.3: upgrade of the **CSC-TF** code

Efficiency

Efficiency unchanged

11 October 2005

I. Mikulec: L1 mu rates and performance

13

Ghost probability

Ghost probability the same

11 October 2005

CSCTF p_T resolution

 \sim Also CSC TF p_T resolution the same

11 October 2005

Conclusions

L1 muon trigger rates have been recalculated for PTDR

- The differences wrt. to DAQ TDR are small no surprises
- Plots will be ready soon after some polishing
- No need to rerun with ORCA 8.13.0 efficiencies, ghost probabilities and p_T resolutions are the same
- To do study cross trigger rates and eventually, effects of misalignment

GMT quality assignment

11 October 2005

pT measurement at $\eta > 2.1$

11 October 2005