
Global Muon Trigger

in CMSSW

Ivan Mikulec
HEPHY Vienna

CMS Online Selection meeting

22 June 2006

I. Mikulec: GMT status 2

Status of GMT emulator in CMSSW

! A fully working standalone GMT emulator was

committed to CMSSW. It is using interface classes -

ready to be run in the full framework.

! The GMT emulator code resides in

L1Trigger/GlobalMuonTrigger. It contains also a

gmt.cfi file with the default GMT configuration and

some .cfg files to run and test in the standalone

mode with sample data.

! The interface classes reside in:

DataFormats/L1GlobalMuonTrigger. These have

been tagged put into nightly builds and scheduled

for the 0_8_0 prerelease - can be referenced by other

systems.

I. Mikulec: GMT status 3

vector<L1MuGMTCand>

vector<L1MuGMTCand>

L1MuGMTReadoutCollection

vector<L1MuRegionalCand>

RPC

CSCTF

Scheme of GMT emulator in CMSSW

E

D

M

E

v

e

n

t

ExternalInputSource:

HW File Reader DTTF

vector<L1MuRegionalCand>
vector<L1MuRegionalCand>

EDProducer:

GMT
vector<L1MuGMTCand>

L1MuGMTReadoutCollection

GT
EDAnalyzer:

GMT check

ORCA HW

HW Test File

ORCA

I. Mikulec: GMT status 4

Functions

! Functions of the GMT code in CMSSW:
• Simulate GMT response (in the MC framework)

• Emulate GMT response (in the HLT fw or standalone)

• Generate GMT LUTs

! Functions (at present) of the GMT Data Formats
• Emulate inter-module communication (TFs-GMT-GT)

• Provide SW representation of the GMT DAQ data (data stored

in the bit-coded format)

• Provide access to individual bit fields (phi, eta, pt - integer)

• Provide access to physical representation of the bit fields

(needs trigger scales - now part of data formats)

I. Mikulec: GMT status 5

Trigger scales issue

" Definitely trigger scales will have to reside in the database

because they are:

– needed by online (TS)

– needed by CMSSW

– they might change in time (need validity intervals).

" Database is accessed in CMSSW through the Event Setup.

There are two possibilities:

! Data formats provide access to physical representation as it

is now but how will the database access be provided (no a

priori pointer to the Event Setup)?

! Separate physical and HW representations as proposed by

Werner, create an extra EDProducer (has access to Event

Setup) and make physical representation persistent (for the

HLT and user)

GMT Emulator

Output Data Formats

(present status)

I. Mikulec: GMT status 7

L1MuGMTReadoutCollection

class L1MuGMTReadoutCollection contains GMT readout
records (RR) for the triggered and surrounding BXs.

Methods:

L1MuGMTReadoutRecord const& getRecord() const;

get the GMT RR for the triggered BX.

L1MuGMTReadoutRecord const& getRecord(int bx) const;

get the GMT RR for a given BX.

vector<L1MuGMTReadoutRecord> getRecords() const;

get all GMT RRs.

I. Mikulec: GMT status 8

L1MuGMTReadoutRecord

class L1MuGMTReadoutRecord contains full DAQ record of GMT

for a given BX. This includes full info inputs, output and

intermediate results.

Methods:

int getBxCounter() const;

vector<L1MuGMTExtendedCand> getGMTCands() const;

vector<L1MuGMTExtendedCand> getGMTBrlCands() const;

vector<L1MuGMTExtendedCand> getGMTFwdCands() const;

vector<L1MuRegionalCand> getDTBXCands() const;

vector<L1MuRegionalCand> getCSCCands() const;

vector<L1MuRegionalCand> getBrlRPCCands() const;

vector<L1MuRegionalCand> getFwdRPCCands() const;

unsigned getMIPbit(int eta, int phi) const;

unsigned getQuietbit(int eta, int phi) const;

I. Mikulec: GMT status 9

L1MuGMTExtendedCand

class L1MuGMTExtendedCand derives from the L1MuGMTCand.

In addition it gives access to the sort rank and the origin of a GMT

muon candidate.

Methods:

unsigned int rank() const; - get rank

unsigned getDTCSCIndex() const; - get DT/CSC muon index

unsigned getRPCIndex() const; - get RPC muon index

bool isFwd() const; - forward=true, barrel=false

bool isRPC() const; - unmatched RPC=true

I. Mikulec: GMT status 10

L1MuGMTCand

class L1MuGMTCand contains the actual information about the
GMT muon candidates as needed and used by the GT and (for
now) provides access to the physical quantities.

Main methods:

int bx() const; - get the bx number

unsigned int phi() const; - get bit code of phi

float phiValue() const; - get phi in radians

unsigned int eta() const; - get bit code of eta

float etaValue() const; - get real eta value

unsigned int pt() const; - get bit code of pt

float ptValue() const; - get pt in GeV

unsigned int quality() const; - get quality code

int charge() const; - get charge

bool isol() const; - get the isolation bit

bool mip() const; - get the mip bit

