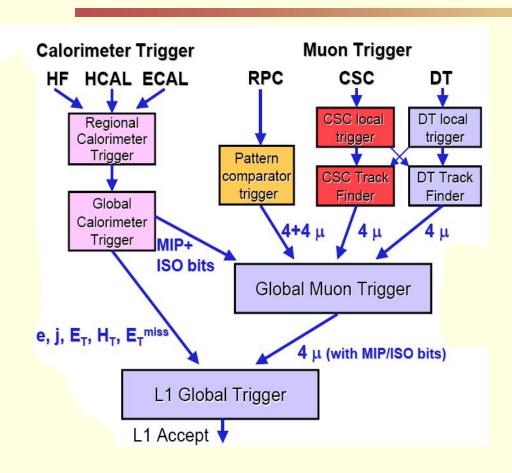
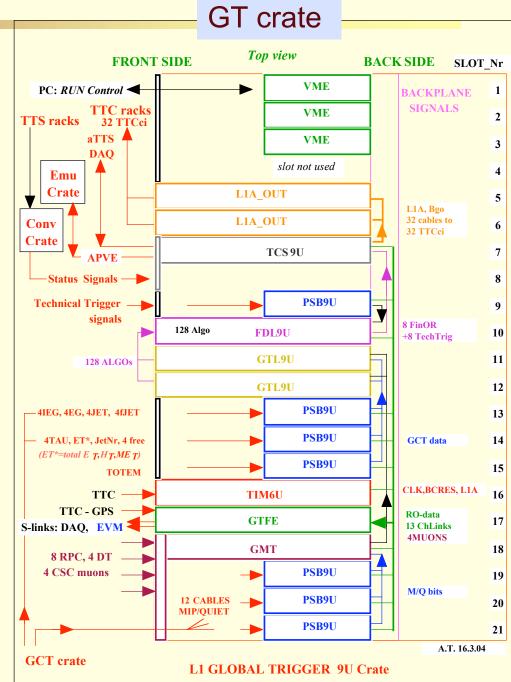
Global Muon Trigger and Global Trigger Software Review


Vienna Group:

H. Bergauer, Ph. Glaser, V. Ghete, M. Jeitler, K. Kastner, B. Neuherz, T. Nöbauer, I. Magrans de Abril, M. Magrans de Abril, I. Mikulec, M. Padrta, H. Rohringer, Th. Schreiner, J. Strauss, A. Taurok, C.-E. Wulz


Presented by: Ivan Mikulec HEPHY Vienna

Trigger SW Review 10 April 2006

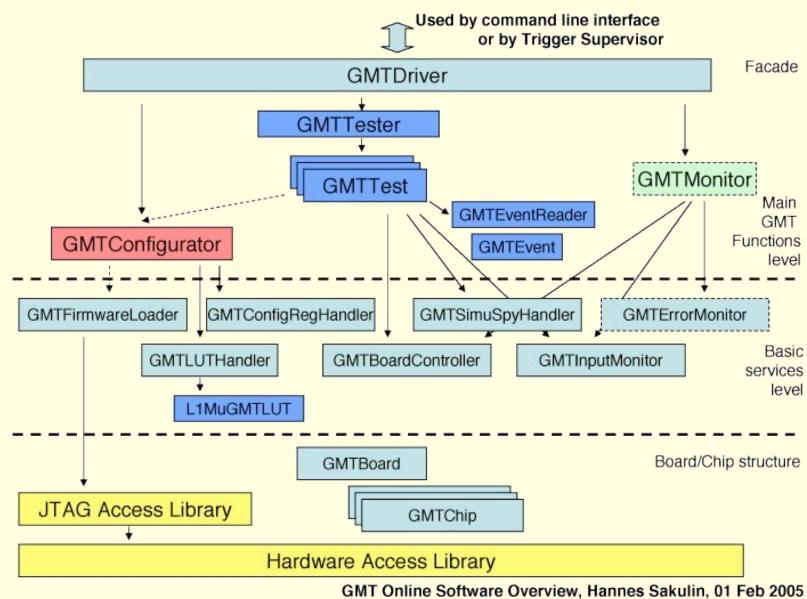
Introduction

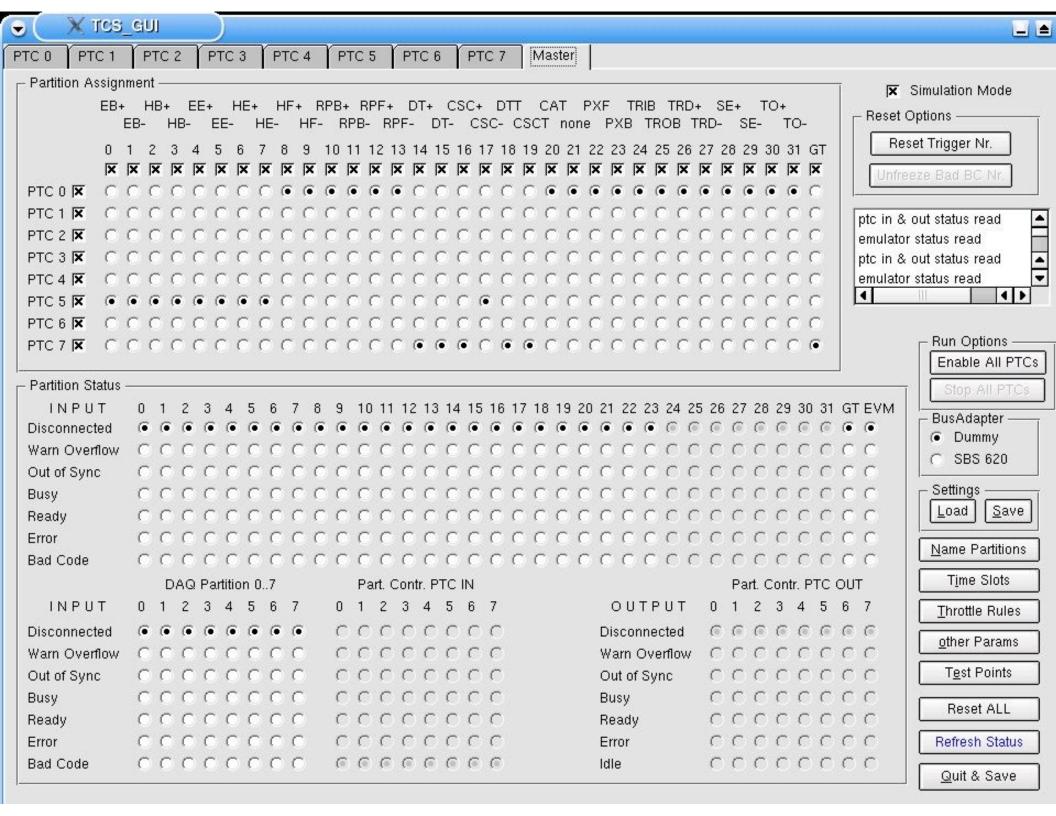
GMT/GT system is implemented in a single 9U VME crate (9 different VME modules)

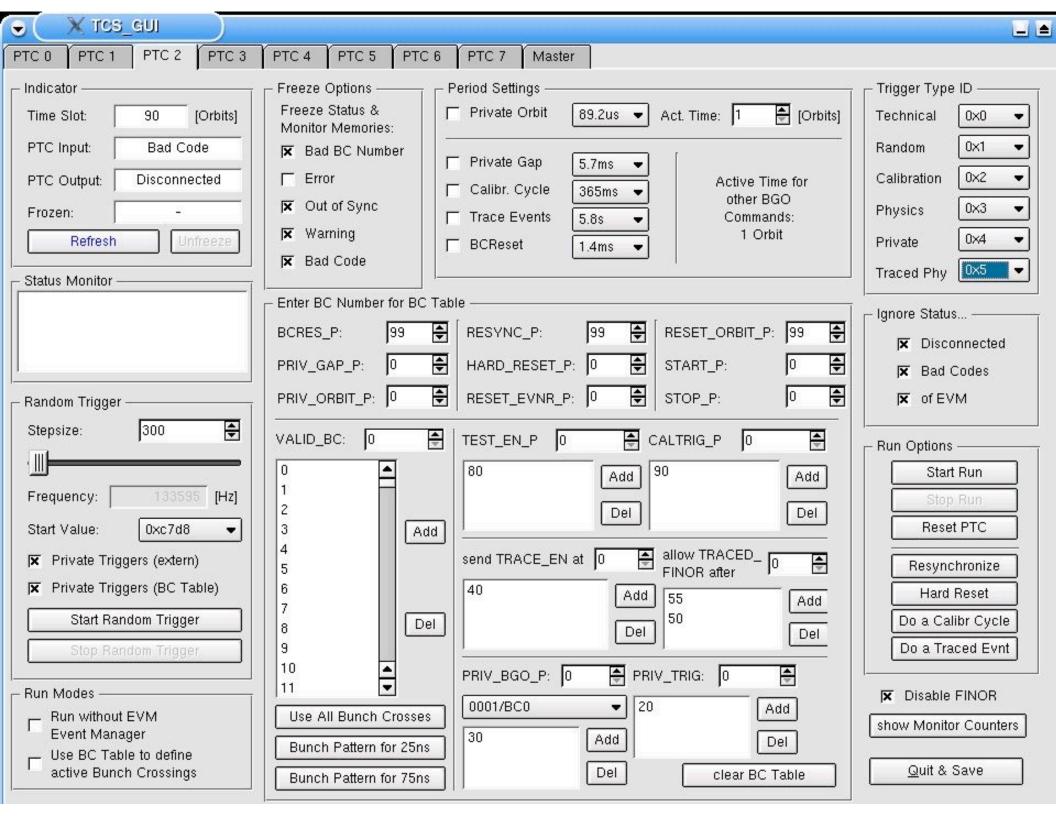
Firmware

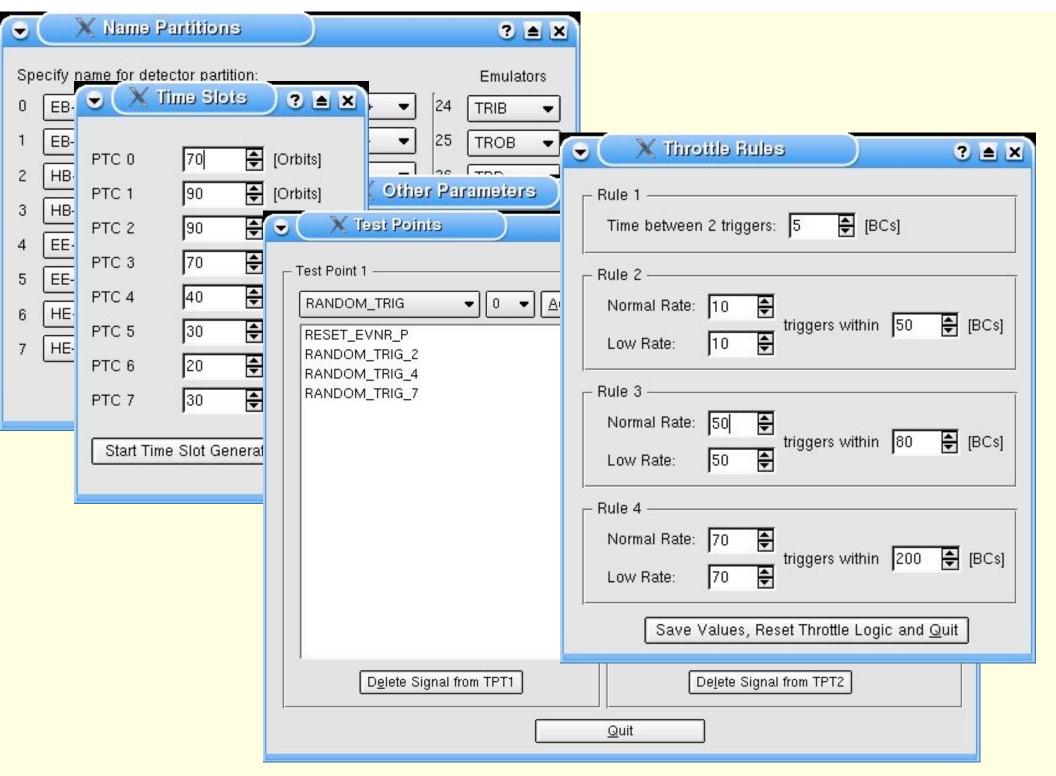
GMT firmware

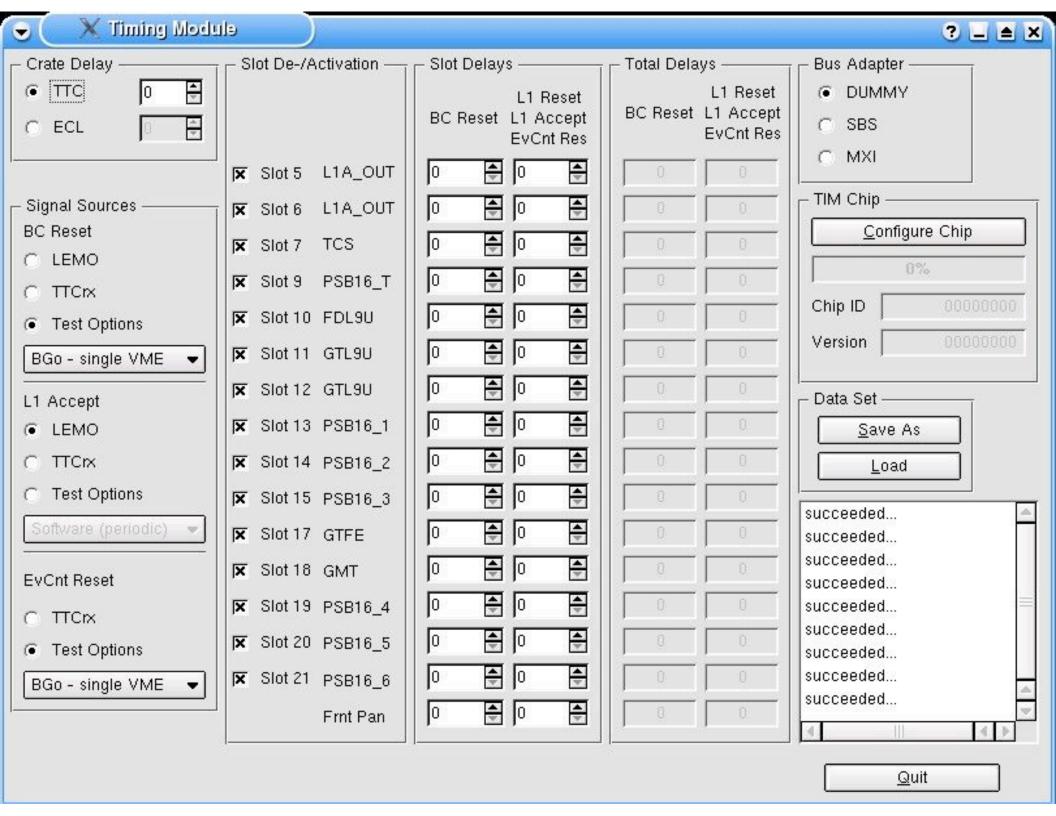
- fully implemented
- contains test features allowing loading and reading patterns at the inputs and outputs and real time bit error counting
- optional test firmware has been developed to add debugging power for calorimeter inputs

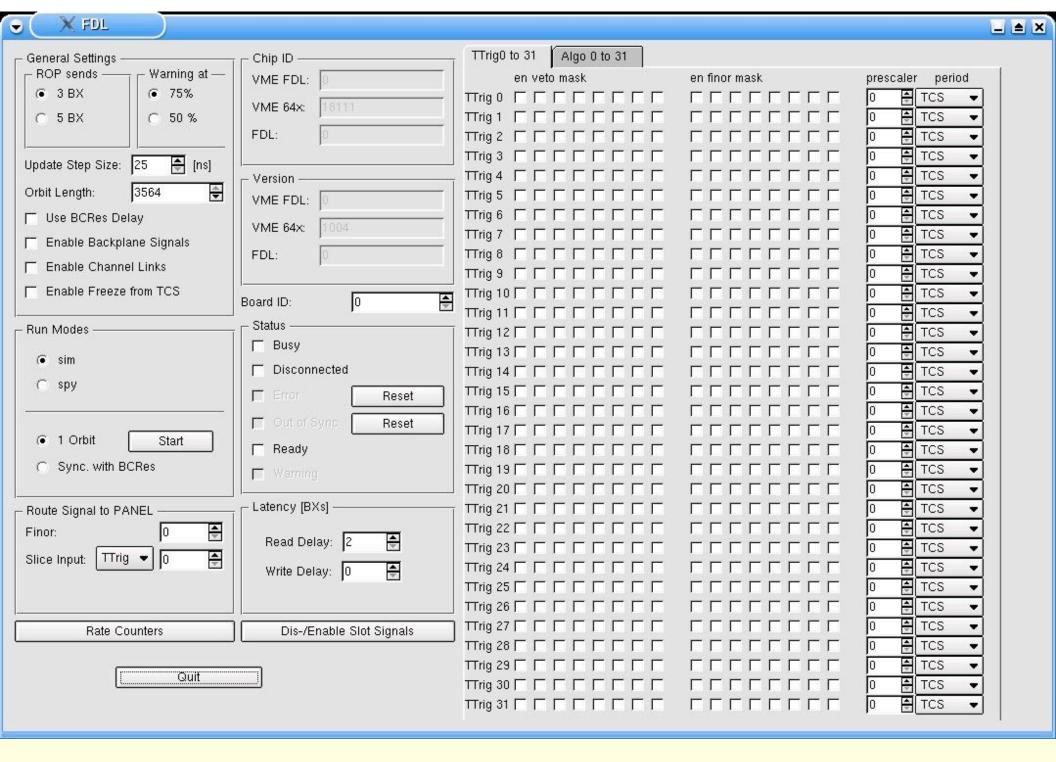

GT firmware


- full trigger functionality implemented
- a standalone program exists to translate XML files containing conditions and algorithms into VHDL code which can be precompiled and stored in the database
- some test and monitoring features still being developed
- modifications needed to prepare for the absence of GCT at the beginning of data taking


HW control


- Command line programs exist which allow full control of each board standalone. They contain also modules to perform individual tests which are being improved and added along with integration activities in b. 904.
- Graphical user interfaces are available for some of the modules. They are based on the same class libraries.
- These programs are successfully being used in the interconnection tests in b. 904. Most input connections were tested (DTTF-GMT, CSCTF-GMT, RPC-GMT, G(R)CT-GT,RPC-GT) using pattern transmission and reading and partially also ORCAgenerated muons. No particular problems observed.


GMT online SW scheme



Integration with Trigger Supervisor

DATABASES:

- connection using DStore tested
- schemes for GMT, TCS, PSB, TIM
- could start with population

OPERATIONS:

- standard operations implemented and tested
- one interconnection test PSB/GMT implemented
- one interconnection test GMT/GTL in progress

Layout of the GMT config. db

GMT_FIRMWARE

FW_KEY_VARCHAR2(32) NOT NULL (PK)
VERSION_NUMBER(32) NULL
URL_VME_VARCHAR2(512) NULL
URL_JAL_VARCHAR2(512) NULL
URL_BYTEBLASTER_VARCHAR2(512) NULL
DESCRIPTION_VARCHAR2(512) NULL

GMT_INX_REGISTERS

IF_REG_KEY_VARCHAR2(32) NOT NULL (PK)
IF_SYNCCONFIGREG_ADDR0 NUMBER(5) NULL
IF_SYNCCONFIGREG_ADDR1 NUMBER(5) NULL
IF_SYNCCONFIGREG_ADDR2 NUMBER(5) NULL
IF_SYNCCONFIGREG_ADDR3 NUMBER(5) NULL
IF_READOUTSYNCREG_ADDR NUMBER(5) NULL
IF_LATDELAYREG_ADDR NUMBER(5) NULL
IF_SIMUSPYCONFIG_ADDR NUMBER(5) NULL
IF_SYDEPTH_ADDR NUMBER(5) NULL
IF_SYPARMPULSE_WADDR NUMBER(5) NULL
IF_SYPARMPULSE_WADDR NUMBER(5) NULL
IF_SCONTROLE_WADDR NUMBER(5) NULL
IF_SCONTROLE_WADDR NUMBER(5) NULL
DESCRIPTION VARCHAR2(512) NULL

GMT_LFX_REGISTERS

LF_REG_KEY VARCHAR2(32) NOT NULL (PK)
LF_CDLCONFIG_ADDR0 NUMBER(5) NULL
LF_CDLCONFIG_ADDR1 NUMBER(5) NULL
LF_CDRTRANKOFFSET_ADDR NUMBER(5) NULL
LF_MMCONFIG_SRK_ADDR NUMBER(5) NULL
LF_MMCONFIG_PHI_ADDR NUMBER(5) NULL
LF_MMCONFIG_ETA_ADDR NUMBER(5) NULL
LF_MMCONFIG_PT_ADDR NUMBER(5) NULL
LF_MMCONFIG_PT_ADDR NUMBER(5) NULL
LF_MMCONFIG_CHARGE_ADDR NUMBER(5) NULL
LF_MMCONFIG_MIP_ADDR NUMBER(5) NULL
LF_MMCONFIG_SONELL
LF_MMCONFIG_SONELL
LF_MCONFIG_SONELL
LF_MCONFI

GMT_SRT_REGISTERS

SF_REG_KEY VARCHAR2(32) NOT NULL (PK)
SF_READOUTSYNCREG_ADDR NUMBER(5) NULL
SF_LATDELAYREG_ADDR NUMBER(5) NULL
SF_SIMUSPYCONFIG_ADDR NUMBER(5) NULL
SF_SPYDEPTH_ADDR NUMBER(5) NULL
SF_SPYARMPULSE_WADDR NUMBER(5) NULL
DESCRIPTION VARCHAR2(512) NULL

GMT_CONFIG

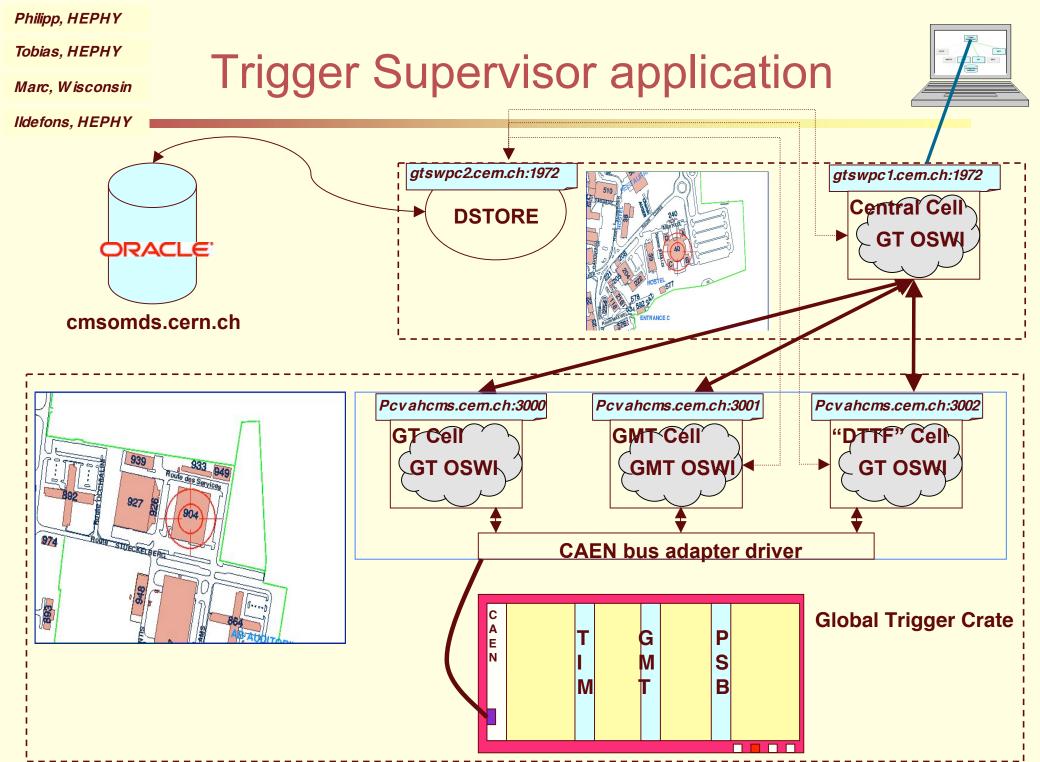
GMT_KEY_VARCHAR2(32) NOT NULL (PK) INB_FW_KEY VARCHAR2(32) NOT NULL (FK) NB_REG_KEY_VARCHAR2(32) NOT NULL (FK) INC_FW_KEY_VARCHAR2(32) NOT NULL (FK) INC_REG_KEY VARCHAR2(32) NOT NULL (FK) IND_FW_KEY_VARCHAR2(32) NOT NULL (FK) ND_REG_KEY_VARCHAR2(32) NOT NULL (FK) INF_FW_KEY_VARCHAR2(32) NOT NULL (FK) INF_REG_KEY VARCHAR2(32) NOT NULL (FK) AUF_FW_KEY VARCHAR2(32) NOT NULL (FK) AUF_REG_KEY_VARCHAR2(32) NOT NULL (FK) AUF_LUTS_KEY VARCHAR2(32) NOT NULL (FK) AUB_FW_KEY_VARCHAR2(32) NOT NULL (FK) AUB_REG_KEY_VARCHAR2(32) NOT NULL (FK) AUB_LUTS_KEY_VARCHAR2(32) NOT NULL (FK) LFF_FW_KEY_VARCHAR2(32) NOT NULL (FK) LFF_REG_KEY_VARCHAR2(32) NOT NULL (FK) LFF_LUTS_KEY VARCHAR2(32) NOT NULL (FK) LFB_FW_KEY VARCHAR2(32) NOT NULL (FK) LFB_REG_KEY_VARCHAR2(32) NOT NULL (FK) LFB_LUTS_KEY VARCHAR2(32) NOT NULL (FK) SRT_FW_KEY_VARCHAR2(32) NOT NULL (FK) SRT_REG_KEY_VARCHAR2(32) NOT NULL (FK) ROP_FW_KEY_VARCHAR2(32) NOT NULL (FK) ROP_REG_KEY VARCHAR2(32) NOT NULL (FK) DESCRIPTION VARCHAR2(512) NULL

GMT_ROP_REGISTERS

ROP_REG_KEY_VARCHAR2(32) NOT NULL (PK) ROP_RESET_ADDR_NUMBER(5) NULL ROP_RESET_DCM_ADDR_NUMBER(5) NULL ROP_COMMAND_ADDR_NUMBER(5) NULL ROP_ITAG_ENABLE_ADDR_NUMBER(5) NULL ROP_PROG_ENABLE_ADDR_NUMBER(5) NULL ROP_NPROG_ADDR_NUMBER(5) NULL ROP_INIT_CMD_ADDR_NUMBER(5) NULL ROP_DIN_INF_ADDR_NUMBER(5) NULL ROP_DIN_INC_ADDR_NUMBER(5) NULL ROP_DIN_IND_ADDR_NUMBER(5) NULL ROP_DIN_INB_ADDR_NUMBER(5) NULL ROP_DIN_AUF_ADDR_NUMBER(5) NULL ROP_DIN_LFF_ADDR_NUMBER(5) NULL ROP_DIN_LFB_ADDR_NUMBER(5) NULL ROP_DIN_AUB_ADDR_NUMBER(5) NULL ROP_DIN_SRT_ADDR_NUMBER(5) NULL ROP_DUMMY_CMD_ADDR_NUMBER(5) NULL ROP_LATDELAYREG_ADDR_NUMBER(5) NULL ROP_VMEWRITEALLMASK_ADDR_NUMBER(5) NU DESCRIPTION VARCHAR2(512) NULL

GMT_AUX_REGISTERS

MIAU_REG_KEY VARCHAR2(32) NOT NULL (PK)
MIAU_READOUTSYNCREG_ADDR NUMBER(5) NULL
MIAU_SIMUSPYCONFIG_ADDR NUMBER(5) NULL
MIAU_SPYDEPTH_ADDR NUMBER(5) NULL
MIAU_SPYARMPUISE_WADDR NUMBER(5) NULL
DESCRIPTION VARCHAR2(512) NULL


GMT_LFX_LUTS

LF_LUTS_KEY_VARCHAR2(32) NOT NULL (PK) LF_MATCHQUALLUT_BASEO VARCHAR2(512) NULL LF_MATCHQUALLUT_BASE1 VARCHAR2(512) NULL LF_MATCHQUALLUT_BASE2 VARCHAR2(512) NULL LF_COUDELTAETALUT_BASEO VARCHAR2(512) NULL LF_COUDELTAETALUT_BASE1 VARCHAR2(512) NULL LF OVLETACONVLUT BASED VARCHAR2(512) NULL LF_OVLETACONVLUT_BASE1 VARCHAR2(512) NULL LF_OVLETACONVLUT_BASE2_VARCHAR2(512) NULL LF_ETACONVLUT_BASE0 VARCHAR2(512) NULL LF_ETACONVLUT_BASE1 VARCHAR2(512) NULL LF_MERGERANKPTQLUT_BASE0 VARCHAR2(512) NULL LF_MERGERANKPTOLUT_BASE1 VARCHAR2(512) NULL LF_PHIPROETACONVLUT_BASE0 VARCHAR2(512) NULL LF_PHIPROETACONVLUT_BASE1 VARCHAR2(512) NULL LF_BLOCKRAM_BASE VARCHAR2(512) NULL LF_SORTRANKETAQLUT_BASE0 VARCHAR2(512) NULL LF_SORTRANKETAQLUT_BASE1 VARCHAR2(512) NULL LF_SORTRANKPTQLUT_BASE0 VARCHAR2(512) NULL LF_SORTRANKPTQLUT_BASE1 VARCHAR2(512) NULL LF_SORTRANKETAPHILUT_BASEO_VARCHAR2(512) NULL LF_SORTRANKETAPHILUT_BASE1 VARCHAR2(512) NULL LF_SORTRANKCOMBINELUT_BASE0 VARCHAR2(512) NULL LF_SORTRANKCOMBINELUT_BASE1 VARCHAR2(512) NULL LF_DELTAETALUT_BASEO_VARCHAR2(512) NULL LF_PTMIXLUT_BASEO VARCHAR2(512) NULL LF MERGERANKETAGLUT BASEO VARCHAR2(512) NULL LF_MERGERANKETAQLUT_BASE1 VARCHAR2(512) NULL LF_MERGERANKETAPHILUT_BASEO_VARCHAR2(512) NULL LF_MERGERANKETAPHILUT_BASE1 VARCHAR2(512) NULL LF_MERGERANKCOMBINELUT_BASE0 VARCHAR2(512) NULL LF_MERGERANKCOMBINELUT_BASE1 VARCHAR2(512) NULL LF DISABLEHOTLUT BASED VARCHAR2(512) NULL LF_PHIPROLUT_BASE0 VARCHAR2(512) NULL

LF_PHIPROLUT_BASE1 VARCHAR2(512) NULL
DESCRIPTION VARCHAR2(512) NULL

GMT_AUX_LUTS

► MIAU_LUTS_KEY_VARCHAR2(32) NOT NULL (PK)
MIAU_ETACONVLUT_BASE1 VARCHAR2(512) NUL
MIAU_ETACONVLUT_BASE1 VARCHAR2(512) NUL
MIAU_ETACONVLUT_BASE2 VARCHAR2(512) NUL
MIAU_ETACONVLUT_BASE3 VARCHAR2(512) NUL
MIAU_PHIPRO1LUT_BASE3 VARCHAR2(512) NULL
MIAU_PHIPRO1LUT_BASE3 VARCHAR2(512) NULL
MIAU_PHIPRO1LUT_BASE3 VARCHAR2(512) NULL
MIAU_PHIPRO2LUT_BASE3 VARCHAR2(512) NULL
MIAU_ETAPROLUT_BASE3 VARCHAR2(512) NULL
DESCRIPTION VARCHAR2(512) NULL
DESCRIPTION VARCHAR2(512) NULL

Integration with Trigger Supervisor

COMMANDS:

- commands implemented for TCS, PSB, TIM, FDL, GMT
- TCS commands offer 80% of the functionality of the standalone GUIs
- 50 % of the TCS commands tested successfully
- possible to control individual DAQ-PTC
- TIM commands allow setup of TIM for interconnection tests
- FDL commands allow readout of rate counters and setup of prescalers
- PSB commands allow simple tests

- **USER INTERFACE:** GT and GMT are using the generic Trigger Supervisor GUI
 - A framework for implementing standalone GUIs in the Trigger Supervisor under development

at least 2 students continuously working on this

GMT simulation/emulation

Production version in ORCA

- used e.g. for calculation of L1 muon trigger performance in PTDR.
- fully compatible with hardware
- used to produce GMT LUTs,
- results from ORCA were tested to be identical to hardware results (apart from few bit errors) - actually used to test hardware
- New private standalone version available in ORCA framework
 - Used to emulate GMT logic with different configurations using same input data/patterns as used for hardware tests.

This standalone version will be used as a starting point for the migration to CMSSW.

GT simulation/emulation

PRODUCTION VERSION in ORCA

- only simple conditions (thresholds) and algorithms (trigger Menu)
- trigger steering data input in ASCII files provided by setup program
- trigger files are in ORCA /Data/L1GlobalTrigger/ for high/low Luminosity
- NOT COMPATIBLE with steering of Global Trigger Hardware
- software results from ORCA checked vs HARDWARE Simulation
- not with full capability of designed GLOBAL TRIGGER HARDWARE
- not full HARDWARE 'BIT' compatibility

BASIC Components

Trigger Config Trigger menu SETUP

PSB PipeLineSynchronizing Buffer

(Trigger Data from Calo's)

GTL Global Trigger Logic

Trigger Data from MUONS

Trigger Logic / Menu/ Algorithms Calculation

FDL Final Decision Logic

GT simulation/emulation

NEW GROUP-INTERNAL ORCA COMPATIBLE SOFTWARE

- with full functionality of Global Trigger HARDWARE for complicated ALGORITHMS
 - 2 muon Thresholds(isolated/non isolated / mip/iso bit check
- advanced HARDWARE 'BIT' compatibility
- triggering/steering data in XML FORMAT, usable also for HARDWARE steering
- Graphical User Interface for XML setup
- values in XML file hexadecimal
- setup for 6U version/ 9U to be done ..

This version will be used as a basis for the migration to CMSSW (Vasile Ghete)

The interface to the CMSSW EDM can be developed in a GT-GMT common effort.

Conclusions

- GT/GMT firmware is fully operational. Only small changes needed for test/monitoring purposes.
- Class libraries for HW control exist with standalone, either command line or graphical, interfaces. Test modules are added along with HW integration tests.
- Interconnection tests in b. 904 up to now did not reveal any particular problem.
- Integration with Trigger Supervisor is continuing.
 Participating in preparation of the TS demonstrator at Cosmic Challenge. Tight on manpower (not a financial problem). Additional students will be hired.
- Simulation/emulation of GMT and GT is implemented in ORCA. Migration to CMSSW is starting. Should be ready until August.