

PSB
Pipelined Synchronising Buffer

Module

9U-Version

H. Bergauer, K. Kastner, M. Padrta, A. Taurok

Oct-05

Version 1.2
with

PSB chip V0012
VME chip V1005

VME64x chip V1000B

 2

1 PSB Module 9U description

VME

INTERFACE

Infiniband
connector

CLOCK

L1A BCRES
RESET

JTAG

CHANNEL
LINK

GTL+ signals

PSB9U board

4 x 32 bit channels

+2 x 12 bits for GMT

DS92LV16

1.4Gbps Serial Link

RJ45

LVDS parallel 16 bits/40 MHz

VME
160

386

ZPACK

2mm

ZPACK

2mm

POWER

+1.5V/3A

+2.5V/3A

LEDs

SYNC

DERANDOMIZING
BUFFERS

Phase

adjustment
DELAY

SPY/SIM

DPM

RING

BUFFER

M
U
X

READOUT
CIRCUITS

XC2V2000-4BF957

R/T

R/T

REC

REC

R/T

R/T

REC

REC

386

386

386

16 bits/80 MHz

Figure 1 : PSB Overview

The PSB9U board receives 1.4 Gbps serial data from the Calorimeter trigger system, converts
the serial bits into 16 bit words, synchronizes the words to the local clock, applies a
programmable delay and sends the trigger objects as 80 MHz GTLp signals via the back-
plane to the destination boards. Therefore each data channel contains the data bits of two
time-multiplexed trigger objects.
The PSB9U boards are used by the Global Trigger as well as by the Global Muon Trigger.
Four Infiniband connectors forward the serial data to 8 DS92LV16 interface chips. After the
serial to parallel conversion the 80 MHz data streams enter two Synchronization chips
(=SYNC) where all the synchronization and monitoring logic is implemented.
The Synchronization Chip contains the over-sampling circuit that samples each word 4 times
that means every 12.5/4 = 3.01 ns. The sample furthest from the data switching time is
connected to the following programmable delay. After the delay the trigger words go through

 3

a multiplexer and then as terminated GTLp signals to the back-plane. The multiplexer circuit
allows sending test data instead of trigger data to the back-plane.

PSB9U board - data flow, monitoring and insertion of Simulation data

MUX

Trigger data

16 bits

VME

SIM_wr_
addr cntr

SIM/SPY DPM

RD_
dly

BCRES

In SIM mode start SIM_wr_addr cntr 2
TICKS before Ring_wr_addr cntr and
set WE=0=read.

In SPY mode (=default) start both address
counters at same time and set
WE=1=write.

Ring_wr_
addr cntr

Over sampling

DLY

OFF

4 samples of bit 0

MUX

160 MHz

80 MHz

80 MHz

DDR

MUX
OUT

MUX

Sel_min_dly

Sel_sim

Sel_sim

16 bits

RD_addr
cntr

BCRES

L1A_pulse

Pulse length = 6
addresses to read
data of 3 BC

Data to readout
logic

A BRes_wraddr_ri

adb dob

WR_
DLY

Res_wraddr

Res_wraddr_ri

MUXRes_wraddr
Res_wraddr_ri

Sel_sim

READOUT LOGIC

d d

ad ad

RING
BUFFER

DPM

1k x 16 bits

1 ramb

web dib

Trigger

data

4k x 16

4 ramb

Figure 2 PSB9U data flow and monitoring scheme

For each 16-bit data stream a Ring Buffer memory monitors the trigger data. The memory
runs in dual port mode. At one side the delayed trigger data are written continuously into the
memory using addresses generated by a counter. The common Bunch Crossing Reset
(BCRES) signal clears the counter synchronously to the clock thereby locking the addresses
to the LHC orbit. After the end of the memory the write procedure continues at the first
address overwriting old data. At the other side of the memory the DAQ-readout circuit applies
a read address to get the data of the bunch crossing that has generated a L1A trigger signal.
The read address is also supplied by a counter running synchronously to the LHC orbit. But a
delayed BRES signal clears the read counter later than the write counter to compensate the
trigger latency, that is the period between the writing time and a read access due to a L1A
signal generated by trigger data of this bunch crossing. The length of the Ring Buffer memory
(256 words) far exceeds the trigger latency.
Each (pair of) 16-bit channel(s) is locked separately to the LHC clock and to the orbit to
compensate different cable delays.
The SYNC chip contains a second set of memories to load test or simulation data and to send
them either once or repeatedly instead of trigger data to the Ring-Buffer and via the back-
plane to the GTL respectively to the GMT board.
The readout circuits and a Derandomizing Buffer are either implemented in the SYNC chip or
in a dedicated ROP chip if more than one SYNC chip per board is required.

 4

1.1 Parallel LVDS input data
The PSB9U accepts also up to 64 bits of parallel trigger data alternatively to data from one
Infiniband cable. The 40 MHz parallel input bits are accepted as LVDS signals received by 16
RJ45 connectors, each accepting 4 signals. The PSB board expects negative logic for
differential signals. Trigger bit =1 is expected with a negative voltage difference. The
SYNC chip inverts the values back to the true input levels before transmission.
1.1.1 Synchronization of 40 MHz parallel trigger data
As the precise arrival time of the data bits is unknown the SYNC chip first samples the input
bits 4 times per bunch-crossing period (~25 ns) to find the switching point of the input data.
Phase selection and delay adjustment are done separately for each 4-bit group to consider time
skew between cables and link chips. The SYNC chip takes the sample furthest away from the
switching time, delays it for a programmable period, multiplexes the data into a 80 MHz data
stream and sends the data as GTL+ signals over the back-plane to the logic board (GTL).
The SYNC chip also writes the input data into a RING BUFFER and in addition into a SPY
memory for monitoring. The Ring Buffer runs continuously overwriting old data. If a Level-1
Accept (L1A) signal arrives at the PSB board, data are moved from the Ring Buffer into a
Derandomizing Memory to be transferred later by the Readout Processor (ROP) to the readout
board (GTFE).
1.1.1.1 Totem Trigger bits
Up to 16 bits are booked be the TOTEM Trigger (May 2004).
1.1.1.2 Free trigger bits (48)
48 bits are free (May 2004).
1.1.2 Synchronization of Technical Trigger bits
One PSB module accepts ‘Technical Trigger’ signals, which might not arrive as 40 MHz
pulses. Therefore an edge sensing circuit generates synchronously to the system clock signal a
25ns pulse if either a rising or falling edge has been detected.

2 Keywords
2.1 RESET Signals
POWER OFF and ON
To switch the GT-crate off is the last option to reset non-working Global Trigger electronics.
NSYSRES configuration of FPGAs

The common crate-reset signal NSYSRES starts the configuration procedure for all
FPGAs except the VME64 chip. It pulls the NPROG net to a low voltage level forcing
the VME and the PSB chip to reconfigure from Proms.

RESET_DCM_PSB
The VME chip sends RESET_DCM_PSB to resynchronize the clock in the PSB chip
to the board CLK.

RESET_PSB and INACTIVE STARTUP of PSB chip
The VME chip sends RESET_PSB to reset the STARTUP module inside the PSB
chip and the common INACTIVE signal enables the IO-pins to switch from high-Z to
active mode.
RESET_PSB GSR pin of STARTUP set initial default values of registers
INACTIVE GTS pin of STARTUP
The RESET_PSB should reload the initial default values into all registers.

L1RES, BCRES, L1A reset State Machines and Counters

 5

The Trigger Control System sends via the backplane the signals L1RES, BCRES, L1A
and Event Counter Reset to reset state machines and counters

• L1RES clears the event data in the FIFOs.
• The ROC state machine returns always to IDLE state and cannot be reset. It

stays in IDLE mode when the FIFOs are empty or when READY =0 (defined
by software).

.

2.2 BCRES signal
It is possible that the distributed BCRES signal does not arrive every LHC orbit. An internal
BC-counter and an Orbit_Length register are used to generate an internal BCRES signal
running in phase with the distributed signal. Every circuit uses the internal BCRES signal to
remain locked to the LHC orbit.
2.3 Sync check for BC0 data
Spy logic stores the arrival time of the SYNC bits as defined in the interface note CMS-IN-
02-069.pdf for each 16 bit word. The number can be read by VME. A difference to a default
value will be flagged as an error.
2.4 Phase check with over-sampling bits
All four samples of bit 0 are spied and compared to each other to find the time when the input
data change their state. Four phase counters are incremented to check the stability of trigger
data. At the end of every LHC orbit the counter contents are saved to be read by VME and the
counters cleared. The contents are used to decide which sample should be taken as reliable
data input.
2.5 Private Monitoring (option)
The 8kwords long SIM memory can run also in SPY mode to store a complete LHC orbit. In
spy-mode the SIM/SPY memory will be written in parallel with the Ring-Buffer but can be
read by VME. It can be used to get a ‘snap shot’ of the input data.
2.6 Test modes

- Read-back registers and memories in the PSB chip allow checking VME accesses.
- The SIM/SPY memory is used to send test- or simulation data to other boards.
- VME generated BCRES pulses and an on-board 40 MHz oscillator are used to run

tests also in stand-alone mode.
2.7 SIM/SPY Memories and serial outputs

- For each channel a 8kW SIM/SPY memory can be used either to spy input data or to
send simulation data to the back-plane.

- Channels 0…3 send the simulation data also to the transmitter part of their DS92LV16
Serial Link Chips. One output connector sends simulation data of channels 0 and 1,
the other of channels 2 and 3.

2.8 Link test & bit error rate & reference memory
Input data can be compared against data from a Reference Memory that provides data either
continuously or just during one LHC orbit.
Both the data source memory and the Reference memory have to be loaded with the same
data set. The data source can be either in the Global Calorimeter electronics or on the same or
a different PSB board.

 6

The reference data are delayed to compensate the latency between the data source and the
arriving time that is the time when input data are written into the SPY memory and the
Ringbuffer.
Whenever the data words are different an error counter is incremented up to ‘FFFF’ where it
stops. Reading the error counters also clears them.
 This circuit is used to measure the bit error rate of the links with test data.

2.9 Cable loopback test
A cable is connected from a transmitter to a receiver connector.
Example: CH0,1 CH5,4
SIM/SPY memories 0 and 1 and the Reference memory are loaded with the same data set.
Channel 0 and 1 send Simulation data, maybe continuosly.
The Reference Memory runs also in the same mode as CH0 and 1.
Channel 4 and 5 receive data for only one orbit.
All error counters are read to clear them in advance.
The program sends now a ‘start at next orbit’ to all 4 channels and to the reference memory
control.
After the transfer we can read the error counters and can compare the receiving spy memories
against the reference data.
2.9.1 Bit error rate & cable loopback
With a setup as above but with all memories running continuously we read from time to time
the error counters and write the results into a log file.
2.10 Configuration modes

2.10.1 PROM and JTAG
PROMS contain the default configuration that is loaded

• at start-up time or whenever
• a SYSRESET signal arrives from the VME or by a
• NPROG command sent by software.

The Proms are be loaded by JTAG.
• JTAG connectors are foreseen for the Parallel-CableIV interface that is used to

download the configuration file from a Notebook-PC.
• JTAG via VME loads the PROMS via the emulated JTAG interface in the VME chip.

A configuration program takes the configuration files and loads the data serially into
the Proms.

The configuration options above require that the PSB chip has been set by solder-jumpers to
MASTER MODE.
2.10.2 Other configuration options
For tests other configuration options are possible, but then the PSB chip has to be re-soldered
to SLAVE mode. Using an optional modification on the PSB Mezzanine board it will/might
also be possible to switch by a software command to Slave Mode.
2.11 Power
+5V and +3.3V are provided by the backplane. Linear voltage generators provide +2.5V and
+1.5V for the FPGA chips.
2.12 Front Panel
240 mm = 4x60mm …4 4-fold Ethernet connectors
80 mm = 6 x 15 …6 Infiniband conn

 7

7 mm LEMO connector
0mm = LEDs mounted above Infiniband connectors

= 327 mm

2.13 Sync IO-pins, ram-blocks
XC2V3000-4 BF957 mounted on MEZZ957 board

96 ramb; Mezz957: 641 io-pins connected to PSB9U board
565 IO-pins:

8x16 in+ 4x16 par_in + 4x16 out (DS92LV16; test)
+ (128+24)GTLp + 21 VREF+ 59 VME(32bit)
+ 29 ChLink + 16 RO-bus
+ 3(L1A,BCRES,L1RESET) +4 Status + 5Config + 20 VRN/VRP

82 RAM blocks:
8x4 Spy + 8 Ring + 8 Derand + (1Ring+1Derand for BCnr)

3 VME chip PSB - V1003
3.1 Versionshistory
• V1000: first design. Error at RESET_MODE. DO NOT USE!! (HB110805).
• V1001: based on V1000, but RESET_MODE error corrected. (HB110805).
• V1002: based on V1001, but PSB/MEM access (ENPSB, ENPSBMEM) made with

DSSYNC for read and write accesses. (HB120805).
• V1003: based on V1002, but write/read for general-register and configuration-register

implemented. (HB160805).
3.2 Logic description
The VME chip PSB works with the VME64x chip PSB as controller for the VME-bus of the
PSB-9U-card. There are VME-registers on it as the Registers for Programmable-chips-
configuration, General registers, Chip ID / version registers and JTAG registers. The VME-
accesses to the PSB-chip are made via this chip too.
3.3 VME access

3.3.1 Base address
Base address of all GT-slaves is encoded on A31-A25 (A24 not used), because of address
space of GTL-6U-card. See definition in VME64x-chip for PSB.
3.3.2 AM and datatransfer
AM=0x0D and 0x09 „extended data access“ - for single access.
AM=0x0F and 0x0B „extended block transfer“ - for block transfer access.
D16 „word access” - for all accesses.
See definitions in VME64x-chip for PSB.
3.4 Chip selection on PSB-9U-card
With the VME addresses A23-A20 the chip selection is done on the PSB-9U-card.

 8

A23 A22 A21 A20 Chip-name
0 0 0 0 VME chip PSB
0 0 0 1 PSB-chip-registers
0 0 1 0 PSB-chip-memories

3.5 VME chip PSB register

Registeraddresses:

A31..A24 A23..A20 A19..A05 A06..A01,(00)
8 bits 13bits 6bits

Base address 0000 XXXX Registers

3.5.1 VME chip PSB address-table
The address-table lists the address-offset which has to be combined with the base-address of
the card.

A23-A00 => Register-name

Register for Programmable-chips-configuration:
0x000000 => CMD_ENPROG-register (write/read)
0x000002 => CMD_NPROG-register (write/read)
0x000004 => CMD_INIT-register (write/read)
0x000006 => STAT_INIT-register (read)
0x000008 => STAT_DONE-register (read)
0x00000A => Configuration register PSB-chip (write)

General pulse registers:
0x000010 => Command pulse register (write)
0x000012 => Status pulse register (read)

General registers:
0x000014 => Command register (write/read)
0x000016 => Status register (read)

Chip ID and version registers:
0x000020 => chip_id_register_3 (read)
0x000022 => chip_id_register_2 (read)
0x000024 => chip_id_register_1 (read)
0x000026 => chip_id_register_0 (read)
0x000028 => version_register_3 (read)
0x00002A => version_register_2 (read)
0x00002C => version_register_1 (read)
0x00002E => version_register_0 (read)

 9

JTAG registers:
0x000030 => tdo_register (write)
0x000032 => tdi_register (read)
0x000034 => tms0_register (write)
0x000036 => tms1_register (write)
0x000038 => cnt32_register (write)
0x00003A => mode0_register (write/read)
0x00003C => mode1_register (write/read)
0x00003E => mode2_register (write/read)

Serial link mode registers:
0x000040 => SERLINK0-register (write/read)
0x000042 => SERLINK1-register (write/read)
0x000044 => SERLINK2-register (write/read)
0x000046 => LOCKED-register (read)

EN_TTIN Register to enable Technical or Totem Trigger bits:
0x000050 => EN_TTIN -register (write/read)

Access to/from PSB-chip:
0x1XXXXX => see PSB-chip-registers
0x2XXXXX => see PSB-chip-memories

3.5.2 Register for Programmable-chips-configuration

The PSB-chip (Virtex-II) is configurable by configuration device and by VMEbus
instructions. The selection is made by jumpers. The register-definition for configuration by
VMEbus shall be a standard. See P:\Lab3Lib\Altera\Lab3_altera\sch\xilinx_conf.

Register names D7..D1 D0
CMD_ENPROG - ENPROG_PSB
CMD_NPROG - NPROG_PSB
CMD_INIT - INIT_PSB
STAT_INIT - INIT_PSB
STAT_DONE - DONE_PSB

3.5.2.1 CMD_ENPROG-register
0x000000 => CMD_ENPROG-register (write/read)
Bit 0 of the CMD_ENPROG-register allows sending the configuration bits via VME-bus to
the PSB-chip.
3.5.2.2 CMD_NPROG-register
0x000002 => CMD_NPROG-register (write/read)
Data-bit 0 = 1 of this register set the NPROG-signal of PSB-chip active. Then it should be
reset to ‘0’. Then the PSB-chip enters into the configuration procedure. The FPGA either
waits for configuration data (slave mode) sent via VME or starts to read configuration bits
from a serial PROM (master mode).

 10

3.5.2.3 CMD_INIT-register
0x000004 => CMD_INIT-register (write/read)
Data-bit 0 = 1 of this register set the NINIT-signal of PSB-chip active.
3.5.2.4 STAT_INIT-register
0x000006 => STAT_INIT-register (read)
Read the status of the NINIT-signal of PSB-chip (data-bit 0)
3.5.2.5 STAT_DONE-register
0x000008 => STAT_DONE-register (read)
Read the status of the DONE-signal of PSB-chip (data-bit 0). After a successful configuration
the PSB-chip sets DONE = 1.
3.5.2.6 Configuration register PSB-chip
0x00000A => Configuration-register PSB-chip (write)
The register is used to load the configuration bits into the PSB-chip (Virtex-II).
A write access to this register generates a CCLK and sends the data-bit 0 as DIN-signal to the
PSB-chip, if the CMD_ENPROG-register bit has been set before. The VME accesses are
repeated until the last bit has been loaded into the PSB-chip.

3.5.3 General pulse registers
Register names D3 D2 D1 D0

Command_Pulse
_Reg

SET_RUNNING
(pulse)

RESET_PSB
(pulse*)

RES_DCM_
PSB (pulse)

PWRDWN_
PSB (pulse)

Status_Pulse_Reg RUNNING LOCKED_
LED

CLK_LOCKED
_PSB

not used

*) also generated by RESET_MODE

Register names D7 D6 D5 D4

Command_Pulse
_Reg

not used not used not used not used

Status_Pulse_Reg not used not used not used not used

3.5.3.1 Command pulse register
0x000010 => Command-pulse-register (write)
D0: PWRDWN_PSB = 1 sends a low active pulse to the PSB-chip setting it into power

down mode. NPWRDWN_B is sent as an open drain signal from the VME-PSB-chip
to the PSB-chip.
Remark from data sheet:
The power-down sequence enables a designer to set the device into a low-power,
inactive state. The sequence is initiated by pulling the PWRDWN_B pin Low. To
monitor power-down status, observe the PWRDWN_B pin. When asserted, power-
down has completed. After a successful wake-up, the status pin de-asserts. While
powered down, the only active pins are the PWRDWN_B and DONE. All inputs are off
and all outputs are 3-stated. While in the POWERDOWN state, the Power On Reset
(POR) circuit is still active, but it does not reset the device if VCCINT , VCCO , or VCCAUX
falls below its minimum value. The POR circuit waits until the PWRDWN_B pin is
released before resetting the device. Also, the PROG_B pin is not sampled while the
device is in the POWERDOWN state. The PROG_B pin becomes active when the
PWRDWN_B pin is released. Therefore, the device cannot be reset while in the

 11

POWERDOWN state. The wake-up sequence is the reverse of the power-down
sequence.

D1: RES_DCM_PSB = 1 sends a high active pulse to the PSB-chip, to forces the DCM
module to lock.

D2: RESET_PSB = 1 sends a high active pulse to the PSB-chip for reset activities.
(RESET_MODE is another source for RESET_PSB.)

D3: SET_RUNNING = 1 sends a high active pulse to set board in RUNNING mode.
3.5.3.2 Status pulse register
0x000012 => Status-pulse-register (read)
D0: not used.
D1: CLK_LOCKED_PSB = 1 indicates, that the DCM module of the PSB chip are

locked to the 40 MHz clock.
This status bit has to be checked immediately after the configuration of the PSB chip
and before any other actions. If the chips do not lock then either the clock signal from
the TIM board or the on-board oscillator are bad.

D2: LOCKED_LED is the status of an AND of all LOCKED-signals.
The LOCKED_LED signal will illuminate the front-panel LED only if all enabled
Serial Receiver Chips are locked to the clock of incoming serial data and if the PSB
Chip has locked to the system clock.

D3: RUNNING = 1 board is active.
If RUNNING = 0, send a SET_RUNNING command via VME.

3.5.4 General registers
Register names D3 D2 D1 D0
Command_Reg V_SEL_

CABLES
VME_CONF EN_ROBUS EN_CHLINK

Status_Reg not used STATUS_SEL_
VME

not used EN_CHLINK

Register names D7 D6 D5 D4
Command_Reg not used not used not used V_SEL_

BACKPL
Status_Reg not used not used JTAG_JUMPER not used

3.5.4.1 Command register
0x000014 => Command-register (write)
D0: EN_CHLINK = 1 enables channel-link-chips, if CLK_LOCKED_PSB is active

(signal NEN_CHLINK active).
D1: EN_ROBUS = 1 enables ROBUS (signal NEN_ROBUS active).
D2: VME_CONF = 1 enables configuration of PSB-chip via VME and switches external

mux from PROM to VME.
D3: V_SEL_CABLES = 1 switches JTAG-chains to cables (MasterBlaster and Parallel-

Cable-IV).
D4: V_SEL_BACKPL = 1 switches JTAG-chains to backplane connection via

SCANPSC110 (if V_SEL_CABLES = 0).

 Truthtable for D4 and D3:

D4 D3
0 0 JTAG-chains via VME

 12

X 1 JTAG-chains via cables
1 0 JTAG-chains via backplane

3.5.4.2 Status register
0x000016 => Status-register (read)
D0: EN_CHLINK is the inverted status of signal NEN_CHLINK.
D1: not used.
D2: STATUS_SEL_VME = 1 indicates, that configuration of PSB-chip via VME is

selected.
For configuration of PSB-chip via VME, set VME_CONF = 1 in the Command-
register.

D3: not used.
D4: not used.
D5: JTAG_JUMPER = 1 indicates, that SEL_CABLE_JTAG-jumper (JP50) is inserted.

Therefore JTAG-chains are connected to cables (MasterBlaster and Parallel-Cable-
IV).
For changing the sources of JTAG-chains, remove the jumper and make the selection
with V_SEL_CABLES and V_SEL_BACKPL in the Command-register.

3.5.5 Chip_ID and version registers

3.5.5.1 Definitions
Chip_id_register and version_register have fixed values in the hardware. These registers have
read access only.
The versions 0x00000000 - 0x00000FFF are used for tests.
The versions 0x00001000 - 0xFFFFFFFF are used for runs in CMS.
3.5.5.2 Settings
PSB-9U-card Nr.1:
chip_id: 0x00018121
version: 0x00001003
3.5.5.3 Chip_ID and version registers addresses

0x000020 => chip_id_register_3 (read)

D7 D6 D5 D4 D3 D2 D1 D0
chip_ID [31..24]

0x000022 => chip_id_register_2 (read)

D7 D6 D5 D4 D3 D2 D1 D0
chip_ID [23..16]

0x000024 => chip_id_register_1 (read)

D7 D6 D5 D4 D3 D2 D1 D0
chip_ID [15..08]

0x000026 => chip_id_register_0 (read)

D7 D6 D5 D4 D3 D2 D1 D0
chip_ID [07..00]

 13

0x000028 => version_register_3 (read)
D7 D6 D5 D4 D3 D2 D1 D0

version [31..24]

0x00002A => version_register_2 (read)

D7 D6 D5 D4 D3 D2 D1 D0
version [23..16]

0x00002C => version_register_1 (read)

D7 D6 D5 D4 D3 D2 D1 D0
version [15..08]

0x00002E => version_register_0 (read)

D7 D6 D5 D4 D3 D2 D1 D0
version [07..00]

3.5.6 JTAG-registers

3.5.6.1 Definitions
JTAG registers are used to control JTAG-chains via VME-bus.
For details see JTAGController.vhd from Hannes Sakulin.

3.5.7 Serial link mode registers

Register
names

D15..D12 D11..D8 D7..D4 D3..D0

SERLINK0 SEND_SYNC_
PATTERN

[3..0]

LINE_
LOOPBACK

[3..0]

TPWRDWN
[3..0]

ENTR
[3..0]

SERLINK1 RPWRDWN
[7..0]

ENREC
[7..0]

SERLINK2 not used LOCAL_LOOPBACK
[7..0]

LOCKED not used LOCKED
[7..0]

Remarks:
23.805 AT corrected in table above NTPWRDWN to TPWRDWN, NRPWRDWN to RPWRDWN.

Index [7..0] means DS92LV16 chip number = channel number.

SEND_SYNC_PATTERN = 1 => transmitter sends SYNC patterns so that a receiver can
synchronize to the incoming data stream.
LINE_LOOPBACK = 1 => the serial received data are returned via the serial transmission
line.
TPWRDWN = 1 => powers down the transmitter part of the chip (signal NTPWRDWN=0).
ENTR = 1 => enables the transmitter circuits of the chip.
LOCAL_LOOPBACK = 1 => returns parallel Transmit-data to parallel Receiver lines.
RPWRDWN = 1 => powers down the receiver part of the chip (signal NRPWRDWN=0).
ENREC = 1 => enables the receiver circuits of the DS92LV16 chip.

 14

0x000040 => SERLINK0-register (write/read)
0x000042 => SERLINK1-register (write/read)
0x000044 => SERLINK2-register (write/read)
0x000046 => LOCKED-register (read)

3.5.8 EN_TTIN Register to enable Technical or Totem Trigger bits

Enables the LVDS receivers for Technical Trigger resp. Totem Trigger signals.
Disabled Receivers send bits 1111 = ‘F’.
See also registers in PSB9U chip to switch between Parallel LVDS and Serial input channels.

Register
names

D15..D0

EN_TTIN EN_R[15..0]

EN_Rxx = 1 => enables parallel LVDS receivers for Parallel cable xx (0 = default).

0x000050 => EN_TTIN-register (write/read)

3.6 DTACK/BERR-generation
Writing to writeable registers and reading from readable registers generates a DTACK signal.
Access to/from PSB-chip generates a DTACK signal.
No BERR signal is generated, always inactive!

 15

4 PSB chip Adresses
4.1 Version history

4.1.1 V0012
VME dtack will be removed earlier, circuit against short pulse during en_psb removed
New Test Signal: bc0_data_ch4 ….BC0 data are detected in Channel_4 (bit 15 =’1’
three times …01011101010…)
4.1.2 V0010, V0011
New: Reference Memory, 8 COMP_DLY registers, 16 Error Counters, new Testpoints
To measure the bit error rate of the Serial Links the module ‘traffic_police’ has been included.
A Reference memory (8kx16 bit DPM) can be loaded with reference data to compare them
with input data. Any difference increments error counters. See also the ‘Keywords’ chapter
for a short description.
DTACK for read access: becomes active now 3 ticks after begin of ‘EN_PSB’
IOSTANDARD: GTLP for CHxx, LVDCI_DV2_33 for TRxx (data to DS92LV16)
4.1.3 V0009
This version is used for first longtime tests.
6.Sept 2005 = 14. implementation of psb_chip_struct
C:\GlobalTrigger\Psb\Psb_chip\psb_chip_lib\ps\psb_chip_struct\psb_chip_impl_14
chip_ID number =8131 chip_version =0009
*** New test points to check SIM/SPY mem 1
*** New : psb_chip_6Sept05.ucf ...one period for CLKIN
*** Timing: RECN3(15)= 9+3.07 > 12.0ns.....accepted by AT.
IOSTANDARD: GTLP for CHxx, LVDCI_DV2_33 for TRxx (data to DS92LV16)
4.2 Overview VME Addresses
A31-A24: = ‘BB’ = base address
A23-20: = 0001 …PSB chip
(A23-20: = 0002 …Address space for other PSB chip memories is not used in present design)

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 0 Register space (1kx16 readback)
0 0 0 0 0 0 0 0 1 Read only status registers

0 0 1 0 0 0 Sim_Spy_memory 0 (8kx16)
0 0 1 0 0 1 Sim_Spy_memory 1 (8kx16)
0 0 1 0 1 0 Sim_Spy_memory 2 (8kx16)
0 0 1 0 1 1 Sim_Spy_memory 3 (8kx16)
0 0 1 1 0 0 Sim_Spy_memory 4 (8kx16)
0 0 1 1 0 1 Sim_Spy_memory 5 (8kx16)
0 0 1 1 1 0 Sim_Spy_memory 6 (8kx16)
0 0 1 1 1 1 Sim_Spy_memory 7 (8kx16)
0 1 0 0 0 0 Reference_memory (8kx16)

 16

4.3 Sim Spy Memories
Remark: In present chip design the memories are also in same address space as the registers.
BB12 0000 SIM_SPY_MEM0 w/r
BB12 4000 SIM_SPY_MEM1 w/r
BB12 8000 SIM_SPY_MEM2 w/r
BB12 C000 SIM_SPY_MEM3 w/r
BB13 0000 SIM_SPY_MEM4 w/r
BB13 4000 SIM_SPY_MEM5 w/r
BB13 8000 SIM_SPY_MEM6 w/r
BB13 C000 SIM_SPY_MEM7 w/r
BB14 0000 REFERENCE_MEM w/r

4.4 Register overview
BB10 0000 CHAN_REG0 w/r
BB10 0002 CHAN_REG1 w/r
BB10 0004 CHAN_REG2 w/r
BB10 0006 CHAN_REG3 w/r
BB10 0008 CHAN_REG4 w/r
BB10 000A CHAN_REG5 w/r
BB10 000C CHAN_REG6 w/r
BB10 000E CHAN_REG7 w/r
*** Delay Registers for Serial Link channels***
BB10 0010 CHAN_DELAY0 w/r
BB10 0012 CHAN_DELAY1 w/r
BB10 0014 CHAN_DELAY2 w/r
BB10 0016 CHAN_DELAY3 w/r
BB10 0018 CHAN_DELAY4 w/r
BB10 001A CHAN_DELAY5 w/r
BB10 001C CHAN_DELAY6 w/r
BB10 001E CHAN_DELAY7 w/r
*** Delay Registers for parallel LVDS data channels***
BB10 0020 LVDS_DELAY0 w/r // bit 3-0
BB10 0022 LVDS_DELAY1 w/r // bit 7-4
BB10 0024 LVDS_DELAY2 w/r
BB10 0026 LVDS_DELAY3 w/r
BB10 0028 LVDS_DELAY4 w/r
BB10 002A LVDS_DELAY5 w/r
BB10 002C LVDS_DELAY6 w/r
BB10 002E LVDS_DELAY7 w/r
BB10 0030 LVDS_DELAY8 w/r
BB10 0032 LVDS_DELAY9 w/r
BB10 0034 LVDS_DELAY10 w/r
BB10 0036 LVDS_DELAY11 w/r
BB10 0038 LVDS_DELAY12 w/r
BB10 003A LVDS_DELAY13 w/r
BB10 003C LVDS_DELAY14 w/r
BB10 003E LVDS_DELAY15 w/r // bit 63-60
*** Setup Registers (setup_reg)***
BB10 0040 BOARD_ID w/r
BB10 0042 BCRES_DELAY w/r

 17

BB10 0044 LATENCY_DELAY w/r
BB10 0046 ROP_SETUP w/r
BB10 0048 MAX_BC_NUMBER w/r //=orbit length -1
BB10 004A SEL_PHASE3100 w/r // select phases for LVDS data
BB10 004C SEL_PHASE6332 w/r // select phases for LVDS data
BB10 004E IDLE_ID_LOW w/r // idle identifier low part

(setup_reg1)
BB10 0050 IDLE_ID_HIGH w/r // idle identifier high part
BB10 0052 TESTMASK0 w/r // tespoint 0 bits
BB10 0054 TESTMASK1 w/r // tespoint 1 bits
BB10 0056 TESTMASK2 w/r // tespoint 2 bits
BB10 0058 TESTMASK3 w/r // tespoint 3 bits
BB10 005A TESTMASK4 w/r // tespoint 4 bits
BB10 005C TESTMASK5 w/r // tespoint 5 bits
BB10 005E TESTMASK6 w/r // tespoint 6 bits
*** Comparator Delays for data from Reference Memory *** (setup_reg2)
BB10 0060 COMP_DLY0 w/r
BB10 0062 COMP_DLY1 w/r
BB10 0064 COMP_DLY2 w/r
BB10 0066 COMP_DLY3 w/r
BB10 0068 COMP_DLY4 w/r
BB10 006A COMP_DLY5 w/r
BB10 006C COMP_DLY6 w/r
BB10 006E COMP_DLY7 w/r

*** Write Only Command Pulses (setup_reg3) ****
BB10 0070 CMD_PULSE w/-
BB10 0072 REF_REG w/r

+++++++++++++++++++ READ ONLY ADDRESSES +++++++++++++++
*** Phase Counters for Serial Link channels ****
BB10 0800 PHASE_CNTR_A0 -/r // compares ph1-ph0 and ph0-pre3
BB10 0802 PHASE_CNTR_ A1 -/r
BB10 0804 PHASE_CNTR_A2 -/r
BB10 0806 PHASE_CNTR_A3 -/r
BB10 0808 PHASE_CNTR_A4 -/r
BB10 080A PHASE_CNTR_A5 -/r
BB10 080C PHASE_CNTR_A6 -/r
BB10 080E PHASE_CNTR_A7 -/r
BB10 0810 PHASE_CNTR_B0 -/r compares ph3-ph2 and ph2-1
BB10 0812 PHASE_CNTR_B1 -/r
BB10 0814 PHASE_CNTR_B2 -/r
BB10 0816 PHASE_CNTR_B3 -/r
BB10 0818 PHASE_CNTR_B4 -/r
BB10 081A PHASE_CNTR_B5 -/r
BB10 081C PHASE_CNTR_B6 -/r
BB10 081E PHASE_CNTR_B7 -/r
*** Phase Counters for parallel LVDS data channels ****
BB10 0820 PHASE_CNTR_A0_3 // compares ph1-ph0 and ph0-pre3 of bits 0-3
BB10 0822 PHASE_CNTR_A4_7 // compares ph1-ph0 and ph0-pre3 of bits 4-7
BB10 0824 PHASE_CNTR_A8_11

 18

BB10 0826 PHASE_CNTR_A12_15
BB10 0828 PHASE_CNTR_A16_19
BB10 082A PHASE_CNTR_A20_23
BB10 082C PHASE_CNTR_A24_27
BB10 082E PHASE_CNTR_A28_31
BB10 0830 PHASE_CNTR_A32_35
BB10 0832 PHASE_CNTR_A36_39
BB10 0834 PHASE_CNTR_A40_43
BB10 0836 PHASE_CNTR_A44_47
BB10 0838 PHASE_CNTR_A48_51
BB10 083A PHASE_CNTR_A52_55
BB10 083C PHASE_CNTR_A56_59
BB10 083E PHASE_CNTR_A60_63 // compares ph1-ph0 and ph0-pre3 of bits 60_63

BB10 0840 PHASE_CNTR_B0_3 // compares ph3-ph2 and ph2-1 of bits 0-3
BB10 0842 PHASE_CNTR_B4_7 // compares ph3-ph2 and ph2-1 of bits 4-7
BB10 0844 PHASE_CNTR_B8_11
BB10 0846 PHASE_CNTR_B12_15
BB10 0848 PHASE_CNTR_B16_19
BB10 084A PHASE_CNTR_B20_23
BB10 084C PHASE_CNTR_B24_27
BB10 084E PHASE_CNTR_B28_31
BB10 0850 PHASE_CNTR_B32_35
BB10 0852 PHASE_CNTR_B36_39
BB10 0854 PHASE_CNTR_B40_43
BB10 0856 PHASE_CNTR_B44_47
BB10 0858 PHASE_CNTR_B48_51
BB10 085A PHASE_CNTR_B52_55
BB10 085C PHASE_CNTR_B56_59
BB10 085E PHASE_CNTR_B60_63 // compares ph3-ph2 and ph2-1 of bits 60_63
*** Status registers ****
BB10 0860 PSB_STATUS -/r
BB10 0862 ROP_STATUS -/r
BB10 0864 CHIP_ID -/r
BB10 0866 VERSION_NR -/r
BB10 0868 CHIP_IDH -/r
*** Error Counters ****
BB10 0870 ERROR_COUNTER0 -/r // REF to input of CH0
BB10 0872 ERROR_COUNTER1 -/r
BB10 0874 ERROR_COUNTER2 -/r
BB10 0876 ERROR_COUNTER3 -/r
BB10 0878 ERROR_COUNTER4 -/r
BB10 087A ERROR_COUNTER5 -/r
BB10 087C ERROR_COUNTER6 -/r
BB10 087E ERROR_COUNTER7 -/r // REF to input of CH7
BB10 0880 ERROR_COUNTER8 -/r // REF to CH0_mem
BB10 0882 ERROR_COUNTER9 -/r
BB10 0884 ERROR_COUNTER10 -/r
BB10 0886 ERROR_COUNTER11 -/r
BB10 0888 ERROR_COUNTER12 -/r
BB10 088A ERROR_COUNTER13 -/r

 19

BB10 088C ERROR_COUNTER14 -/r
BB10 088E ERROR_COUNTER15 -/r // REF to CH7_mem

******************* END OF OVERVIEW **********************

 20

4.5 Channel Registers
write & read functions
BB10 0000 CHAN_REG0 rx tx lvds
BB10 0002 CHAN_REG1 rx tx lvds
BB10 0004 CHAN_REG2 rx tx
BB10 0006 CHAN_REG3 rx tx
BB10 0008 CHAN_REG4 rx
BB10 000A CHAN_REG5 rx
BB10 000C CHAN_REG6 rx
BB10 000E CHAN_REG7 rx

Channels 0,1: Parallel LVDS data can be received instead of the serial input data.
Channels 0,1,2,3: Simulation data can also be sent via the serial transmitter circuits to two
front panel connectors.
Channels 4,5,6,7: receive serial data only.

CHAN_REG0 bit 6: refmem_contin_mode

= 1 The Reference Memory runs continously to check the incoming data
= 0 The Reference Memory runs for one orbit only after a ‘start reference_mem at
next orbit’ command pulse. See bit 15 of PSB_CMD_PULSE.

If we select simulation mode (sel_sim_mode=1) for these channels then LVDS data are not
transferred to the FDL board (Technical trigger bits) and not to the GTL board (TOTEM
trigger bits).

 bits 15-6 : free

bit 5: en_trx_data
=1: send data from SIM_SPY memory also via DS92LV16 Serial Link
transmitter to the Frontpanel connector.

bit 4: sel_contin_mode
=1: The SIM_SPY memory runs continuously either sending simulation data or
storing input data
=0: The SIM_SPY memory runs for one orbit only and stops afterwards.

bit 3: sel_sim_mode
=1: The SIM_SPY memory sends simulation data to the backplane and if
enabled in channels 0-3 also to the DS92LV16 Serial Link transmitters.
=0: The SIM_SPY memory stores input data for monitoring tasks.
For channels 0 and 1 the simulation data will replace either serial or parallel
trigger data.

bit 2: sel_lvdsdata
…is valid for channels 0 and 1 only. For channels 2…7 it has to be set =0
otherwise no data will be transferred.
=1: Send parallel LVDS data to the backplane (Technical Trigger data)
=0: Send data from the DS92LV16 Serial Link to the backplane (Calorimeter
trigger data)

bit 1: sel_phase(1)
bit 0: sel_phase(0)

 21

Select Phase in over-sampling circuit to forward the trigger input data from the
serial link. Take the sample that is most far from the data switching time.
V0005: Only phases 0 and 2 can be selected because of timing problems in the
chip.
00 = take phase 0, 10 = take phase 2, 01 = inhibit data, 11 = inhibit data

4.6 Delay Registers for Serial Link Channels
write & read

BB10 0010 CHAN_DELAY0
BB10 0012 CHAN_DELAY1
BB10 0014 CHAN_ DELAY2
BB10 0016 CHAN_DELAY3
BB10 0018 CHAN_ DELAY4
BB10 001A CHAN_DELAY5
BB10 001C CHAN_ DELAY6
BB10 001E CHAN_DELAY7

4.6.1 Programming Guideline for DELAYS
15 - 12 11 - 8 7 - 4 3 - 0
Delay C Delay B Delay A Delay= 0…3

Total Delay = Delay C + Delay B + Delay A + (0…3)
 -- DELAY =0 0000 0000 0000 0000
 -- DELAY =1 0000 0000 0000 0001
 -- DELAY =2 0000 0000 0000 0010
 -- DELAY =3 0000 0000 0000 0011
 -- DELAY =C+B+A+3 CCCC BBBB AAAA 0011

 -- For DELAY <4 the bits 15-4 have to be =0 !!
 -- Bits 3,2 are always =0; are not decoded

Remark about tests with different delays:

The SRL16 works like a shift register with an output multiplexer that can switch each
shift register bit to the output as selected by A3,2,1,0.
If we change from a short to a long delay then it is possible that the shifted signal
appears a second time at the output. Therefore we have to wait until the signal has
been moved out before applying the new longer delay. However in real life the delay
will not be changed during a run.

4.7 Delay Registers for parallel LVDS data channels
BB10 0020 LVDS_DELAY0 w/r // bit 3-0
BB10 0022 LVDS_DELAY1 w/r // bit 7-4
BB10 0024 LVDS_DELAY2 w/r
BB10 0026 LVDS_DELAY3 w/r
BB10 0028 LVDS_DELAY4 w/r
BB10 002A LVDS_DELAY5 w/r
BB10 002C LVDS_DELAY6 w/r
BB10 002E LVDS_DELAY7 w/r
BB10 0030 LVDS_DELAY8 w/r

 22

BB10 0032 LVDS_DELAY9 w/r
BB10 0034 LVDS_DELAY10 w/r
BB10 0036 LVDS_DELAY11 w/r
BB10 0038 LVDS_DELAY12 w/r
BB10 003A LVDS_DELAY13 w/r
BB10 003C LVDS_DELAY14 w/r
BB10 003E LVDS_DELAY15 w/r // bit 63-60
4.7.1 Programming Guideline for DELAYS
15 - 12 11 - 8 7 - 4 3 - 0
Delay C Delay B Delay A Delay= 0…3

Total Delay = Delay C + Delay B + Delay A + (0…3)
 -- DELAY =0 0000 0000 0000 0000
 -- DELAY =1 0000 0000 0000 0001
 -- DELAY =2 0000 0000 0000 0010
 -- DELAY =3 0000 0000 0000 0011
 -- DELAY =C+B+A+3 CCCC BBBB AAAA 0011

 -- For DELAY <4 the bits 15-4 have to be =0 !!
 -- Bits 3,2 are always =0; are not decoded

4.8 Board Identifier
BB10 0040 BOARD_ID write & read
 16 bit word to identify the PSB board in the data record for CMS readout.

4.9 BCRES Delay
BB10 0042 BCRES_DELAY write & read
--
15 - 12 11 - 8 7 - 4 3 - 0
Delay C Delay B Delay A Delay= 0…3

Total Delay = Delay C + Delay B + Delay A + (0…3)
 -- DELAY =0 0000 0000 0000 0000
 -- DELAY =1 0000 0000 0000 0001
 -- DELAY =2 0000 0000 0000 0010
 -- DELAY =3 0000 0000 0000 0011
 -- DELAY =C+B+A+3 CCCC BBBB AAAA 0011

 -- For DELAY <4 the bits 15-4 have to be =0 !!
 -- Bits 3,2 are always =0; are not decoded

4.10 Latency Delay
BB10 0044 LATENCY_DELAY write & read

15 - 12 11 - 8 7 - 4 3 - 0

 23

Delay C Delay B Delay A Delay= 0…3

Total Delay = Delay C + Delay B + Delay A + (0…3)
 -- DELAY =0 0000 0000 0000 0000
 -- DELAY =1 0000 0000 0000 0001
 -- DELAY =2 0000 0000 0000 0010
 -- DELAY =3 0000 0000 0000 0011
 -- DELAY =C+B+A+3 CCCC BBBB AAAA 0011

 -- For DELAY <4 the bits 15-4 have to be =0 !!
 -- Bits 3,2 are always =0; are not decoded

4.11 ROP Setup register
BB10 0046 ROP_SETUP write & read

Bit 15 – 4 are not used
Bit 3:en_robus =0 (default)

=1 enable the Bgo commands as the TIM board sends via the ROBUS
=0 the PSB uses the encoded command (L1Res, Bcres, L1A) signals sent by
the TIM board.

Bit 2: five_bx_event =0 (default)
=1: A readout record contains data from 5 bunch crossings around the
triggering bx (-2, -1, 0, +1, +2).
=0: A readout record contains data from 3 bunch crossings around the
triggering bx (-1, 0, +1)

Bit 1 and bit 0: PSB_MODE
 = 0 0 PSB is DISCONNECTED from readout (=default)

= 0 1 PSB is BUSY with other tasks and cannot receive any L1A for the time
being. But the ROP, all counters and registers are correct to continue the data
taking run.
= 1 0 PSB is READY and waits for the Bgo command ‘RUN’ to receive L1A
and to send events to the GTFE board. For tests the ‘RUN’ command can also
be simulated by a vme cmd pulse.

 = 1 1 PSB sends BAD CODE…should never be set except for a test

4.12 MAX_BC_NUMBER
BB10 0048 MAX_BC_NUMBER w/r //=orbit length -1
Default value = 3563 dec = DEB hex
The number is used by a comparator to generate an internal bunch counter reset signal.
If it does not agree with external BCRES signal from the TIM board then a BC_ERROR flag
will be set.
A BC_ERROR appears always with the first external BCRES and when sending a
BCRes_vme signal. It has to be cleared by the command pulse ‘Res_BC_error’.
Remark: If MAX_BC_NUMBER = 0 then no BCRES will be generated inside the chip and
the power consumption increases by 1-2 A.

4.13 SEL_PHASES for LVDS bits 63-00
BB10 004A SEL_PHASE3100 w/r // select phases for LVDS data
BB10 004C SEL_PHASE6332 w/r // select phases for LVDS data

 24

SEL_PHASE3100 15,14 13,12 11,10 9, 8 7, 6 5, 4 3, 2 1, 0
Selects phases
for LVDS bits:

31-28 27-24 23-20 19-16 15-12 11 - 8 7 - 4 3 - 0

SEL_PHASE6332 15,14 13,12 11,10 9, 8 7, 6 5, 4 3, 2 1, 0
Selects phases
for LVDS bits:

63-60 59-56 55-52 51-48 47-44 43-40 39-36 35-32

00 selects phase sample 0
01 selects phase sample 1
10 selects phase sample 2
11 selects phase sample 3

4.14 Idle Identifier low
BB10 004E IDLE_IDL write & read
 IDLE_IDL(15:0) defines the bits 15-0 that are sent between data records over
the Channel Links to the GTFE readout board.
4.15 Idle Identifier high
BB10 0050 IDLE_IDH write & read
 IDLE_IDH(11:0) defines the bits 27-16 that are sent between data records over
the Channel Links to the GTFE readout board.

IDLE_IDH(15:12) =B”0000” are not used.

 25

4.16 TESTPOINTS
BB10 0052 TESTMASK0 w/r // tespoint 0 bits
BB10 0054 TESTMASK1 w/r // tespoint 1 bits
BB10 0056 TESTMASK2 w/r // tespoint 2 bits
BB10 0058 TESTMASK3 w/r // tespoint 3 bits
BB10 005A TESTMASK4 w/r // tespoint 4 bits
BB10 005C TESTMASK5 w/r // tespoint 5 bits
BB10 005E TESTMASK6 w/r // tespoint 6 bits
 TESTMASK0…6 select the signals that can be connected to the test points for
monitored with an oscilloscope. If several signals per test point are selected then the signals
are merged with an OR-function.
4.16.1 TESTMASKS for V0012
Red = new
bc0_data_ch4 = BC0 data in Channel 4 detected, signal appears 2 ticks later

bits TESTMASK 0 TESTMASK 1 TESTMASK 2 TESTMASK 3
15 clk40 clk80 vme_wr clr =/locked
14 bcres_int bc_error bcres_dlyed bcres_dlyed1
13 res_evnr res_orbitnr_i l1res_int run_rop
12 run_next_orbit(0) rd_chan_reg(0) wr_chan_reg(0) chout0(15)
11 l1res_vme bc0_data_ch4 l1a_int l1a_int
10 psb_status(0) psb_status(1) psb_status(2) psb_status(3)
9 start_rop_vme stop_rop_vme vme_rd_spy(0) resevnr_vme
8 daq_data(24) daq_data(25) daq_data(26) daq_data(27)
7 write_fifo read_fifo store_fifo_data sclr_fifo
6 clr_ring_rdaddr clr_ring_wradr en_compp inc_event_nr
5 sim_addr1(0) sim_addr1(1) sim_addr1(2) sim_addr1(3)
4 sim_addr0(0) sim_addr0(1) sim_addr0(2) sim_addr0(3)
3 vdout_ch1(0) vdout_ch1(1) vdout_ch1(2) vdout_ch1(3)
2 inc_phas4(0) inc_phas4(1) inc_phas4(2) inc_phas4(3)
1 inc_lvd0sph(0) inc_lvd0sph(1) inc_lvd0sph(2) inc_lvd0sph(3)
0 stat_reg0(0) stat_reg0(1) stat_reg0(2) stat_reg0(3)

bits TESTMASK 4 TESTMASK 5 TESTMASK6
15 ‘0’ vme_en dtack
14 ‘0’ we_spy_0 sim_mem0(0)
13 ‘0’ vme_we_spy(0) vme_en_spy(0)
12 ‘0’ chout4(15) trx0(15)
11 ‘0’ bcres_vme trx3(0)
10 ‘0’ run_next_orbit_refmem trx2(0)
9 ‘0’ res_bc_error trx1(0)
8 ‘0’ run_next_orbit trx0(0)
7 ‘0’ chout7(0) en_spy7
6 ‘0’ chout6(0) en_spy6
5 ‘0’ chout5(0) en_spy5
4 ‘0’ chout4(0) en_spy4
3 ‘0’ chout3(0) en_spy3

 26

4.16.2 TESTMASKS for V0010
Red = new
 en_compp = enables the comparators for Link tests
 run_next_orbit_refmem = starts the Reference memory to send data in next orbit

bits TESTMASK 0 TESTMASK 1 TESTMASK 2 TESTMASK 3
15 clk40 clk80 vme_wr clr =/locked
14 bcres_int bc_error bcres_dlyed bcres_dlyed1
13 res_evnr res_orbitnr_i l1res_int run_rop
12 run_next_orbit(0) rd_chan_reg(0) wr_chan_reg(0) chout0(15)
11 l1res_vme l1a_int l1a_int l1a_int
10 psb_status(0) psb_status(1) psb_status(2) psb_status(3)
9 start_rop_vme stop_rop_vme vme_rd_spy(0) resevnr_vme
8 daq_data(24) daq_data(25) daq_data(26) daq_data(27)
7 write_fifo read_fifo store_fifo_data sclr_fifo
6 clr_ring_rdaddr clr_ring_wradr en_compp inc_event_nr
5 sim_addr1(0) sim_addr1(1) sim_addr1(2) sim_addr1(3)
4 sim_addr0(0) sim_addr0(1) sim_addr0(2) sim_addr0(3)
3 vdout_ch1(0) vdout_ch1(1) vdout_ch1(2) vdout_ch1(3)
2 inc_phas4(0) inc_phas4(1) inc_phas4(2) inc_phas4(3)
1 inc_lvd0sph(0) inc_lvd0sph(1) inc_lvd0sph(2) inc_lvd0sph(3)
0 stat_reg0(0) stat_reg0(1) stat_reg0(2) stat_reg0(3)

bits TESTMASK 4 TESTMASK 5 TESTMASK6
15 ‘0’ vme_en dtack
14 ‘0’ we_spy_0 sim_mem0(0)
13 ‘0’ vme_we_spy(0) vme_en_spy(0)
12 ‘0’ chout4(15) trx0(15)
11 ‘0’ bcres_vme trx3(0)
10 ‘0’ run_next_orbit_refmem trx2(0)
9 ‘0’ res_bc_error trx1(0)
8 ‘0’ run_next_orbit trx0(0)
7 ‘0’ chout7(0) en_spy7
6 ‘0’ chout6(0) en_spy6
5 ‘0’ chout5(0) en_spy5
4 ‘0’ chout4(0) en_spy4
3 ‘0’ chout3(0) en_spy3
2 ‘0’ chout2(0) en_spy2
1 ‘0’ chout1(0) en_spy1
0 ‘0’ chout0(0) en_spy0

4.16.3 TESTMASKS for V0009
Red = new
bits TESTMASK 0 TESTMASK 1 TESTMASK 2 TESTMASK 3
15 clk40 clk80 vme_wr clr =/locked
14 bcres_int bc_error bcres_dlyed bcres_dlyed1
13 res_evnr res_orbitnr_i l1res_int run_rop
12 run_next_orbit(0) rd_chan_reg(0) wr_chan_reg(0) chout0(15)
11 l1res_vme l1a_int l1a_int l1a_int

 27

10 psb_status(0) psb_status(1) psb_status(2) psb_status(3)
9 start_rop_vme stop_rop_vme vme_rd_spy(0) resevnr_vme
8 daq_data(24) daq_data(25) daq_data(26) daq_data(27)
7 write_fifo read_fifo store_fifo_data sclr_fifo
6 clr_ring_rdaddr clr_ring_wradr w_cmd_puls inc_event_nr
5 sim_addr1(0) sim_addr1(1) sim_addr1(2) sim_addr1(3)
4 sim_addr0(0) sim_addr0(1) sim_addr0(2) sim_addr0(3)
3 vdout_ch1(0) vdout_ch1(1) vdout_ch1(2) vdout_ch1(3)
2 inc_phas4(0) inc_phas4(1) inc_phas4(2) inc_phas4(3)
1 inc_lvd0sph(0) inc_lvd0sph(1) inc_lvd0sph(2) inc_lvd0sph(3)
0 stat_reg0(0) stat_reg0(1) stat_reg0(2) stat_reg0(3)

bits TESTMASK 4 TESTMASK 5 TESTMASK6
15 ‘0’ vme_en dtack
14 ‘0’ we_spy_0 sim_mem0(0)
13 ‘0’ vme_we_spy(0) vme_en_spy(0)
12 ‘0’ chout4(15) trx0(15)
11 ‘0’ bcres_vme trx3(0)
10 ‘0’ reset_error_flag trx2(0)
9 ‘0’ res_bc_error trx1(0)
8 ‘0’ run_next_orbit trx0(0)
7 ‘0’ chout7(0) en_spy7
6 ‘0’ chout6(0) en_spy6
5 ‘0’ chout5(0) en_spy5
4 ‘0’ chout4(0) en_spy4
3 ‘0’ chout3(0) en_spy3
2 ‘0’ chout2(0) en_spy2
1 ‘0’ chout1(0) en_spy1
0 ‘0’ chout0(0) en_spy0

4.16.4 TESTMASKS for V0007 & V0008
bits TESTMASK 0 TESTMASK 1 TESTMASK 2 TESTMASK 3
15 clk40 clk80 vme_wr clr =/locked
14 bcres_int bc_error bcres_dlyed bcres_dlyed1
13 res_evnr res_orbitnr_i l1res_int run_rop
12 run_next_orbit(0) rd_chan_reg(0) wr_chan_reg(0) chout0(15)
11 l1res_vme l1a_int l1a_int l1a_int
10 psb_status(0) psb_status(1) psb_status(2) psb_status(3)
9 start_rop_vme stop_rop_vme vme_rd_spy(0) resevnr_vme
8 daq_data(24) daq_data(25) daq_data(26) daq_data(27)
7 write_fifo read_fifo store_fifo_data sclr_fifo
6 clr_ring_rdaddr clr_ring_wradr w_cmd_puls inc_event_nr
5 rop_status(11) rop_status(12) rop_status(14) rop_status(15)
4 sim_addr0(0) sim_addr0(1) sim_addr0(2) sim_addr0(3)
3 inc_phas5(0) inc_phas5(1) inc_phas5(2) inc_phas5(3)
2 inc_phas4(0) inc_phas4(1) inc_phas4(2) inc_phas4(3)
1 inc_lvd0sph(0) inc_lvd0sph(1) inc_lvd0sph(2) inc_lvd0sph(3)
0 stat_reg0(0) stat_reg0(1) stat_reg0(2) stat_reg0(3)

 28

bits TESTMASK 4 TESTMASK 5 TESTMASK6
15 ‘0’ vme_en dtack
14 ‘0’ we_spy_0 sim_mem0(0)
13 ‘0’ vme_we_spy(0) vme_en_spy(0)
12 ‘0’ chout4(15) trx0(15)
11 ‘0’ bcres_vme trx3(0)
10 ‘0’ reset_error_flag trx2(0)
9 ‘0’ res_bc_error trx1(0)
8 ‘0’ run_next_orbit trx0(0)
7 ‘0’ chout7(0) en_spy7
6 ‘0’ chout6(0) en_spy6
5 ‘0’ chout5(0) en_spy5
4 ‘0’ chout4(0) en_spy4
3 ‘0’ chout3(0) en_spy3
2 ‘0’ chout2(0) en_spy2
1 ‘0’ chout1(0) en_spy1
0 ‘0’ chout0(0) en_spy0

 29

4.16.5 TESTMASKS for V0005, V0006:
bits TESTMASK 0 TESTMASK 1 TESTMASK 2 TESTMASK 3
15 Clk40 Clk80 ‘0’ clr =/locked
14 BCRes_int bc_error bcres_dlyed bcres_dlyed1
13 Res_Evnr Res_Orbitnr_i L1Res_int run_rop
12 Run_next_orbit(0) en_spy_0 we_spy_0 chout0(15)
11 L1Res_vme L1A_int L1A_int L1A_int
10 psb_status(0) psb_status(1) psb_status(2) psb_status(3)
9 ‘0’ ‘0’ vme_wr vme_en_spy
8 daq_data(24) daq_data(25) daq_data(26) daq_data(27)
7 write_fifo read_fifo store_fifo_data sclr_fifo
6 clr_ring_rdaddr clr_ring_wradr ‘0’ inc_event_nr
5 rop_status(11) rop_status(12) rop_status(14) rop_status(15)
4 rop_status(7) rop_status(8) rop_status(9) rop_status(10)
3 inc_phas4(3) inc_phas5(3) inc_lvd0sph(3) stat_reg0(3)
2 inc_phas4(2) inc_phas5(2) inc_lvd0sph(2) stat_reg0(2)
1 inc_phas4(1) inc_phas5(1) inc_lvd0sph(1) stat_reg0(1)
0 inc_phas4(0) inc_phas5(0) inc_lvd0sph(0) stat_reg0(0)

bits TESTMASK 4 TESTMASK 5 TESTMASK6
15 ‘0’ vme_en vme_en
14 ‘0’ dtack vme_wr
13 ‘0’ vme_we_spy(0) vme_rd_spy(0)
12 ‘0’ rd_chan_reg(0) wr_chan_reg(0)
11 ‘0’ rd_chan_delay(0) wr_chan_delay(0)
10 ‘0’ rd_lvds_delay(0) wr_lvds_delay(0)
9 ‘0’ rd_setup_reg(0) wr_setup_reg(0)
8 ‘0’ rd_setup_reg1(0) wr_setup_reg1(0)
7 ‘0’ rd_stat_regs(0) w_cmd_pulse
6 ‘0’ rd_phase_cntb (0) rd_phase_cnta (0)
5 ‘0’ rd_phase_a6332 (0) rd_phase_a3100 (0)
4 ‘0’ rd_phase_b6332 (0) rd_phase_b3100 (0)
3 ‘0’ Start_rop_vme Stop_rop_vme
2 ‘0’ ResOrbnr_vme reset_error_flag
1 ‘0’ ResEvnr_vme res_bc_error
0 ‘0’ BCRes_vme run_next_orbit

 30

See ROP_STATUS bits: 15= roc_is_idle, 14=run_rop, 13=0, 12=out_of_sync,
11=error, 10=warning, 9=full_fifo, 8-0 = empty fifos.
ROP internal signals:

write_fifo
read_fifo, sclr_fifo
store_fifo_data
inc_event_nr
clr_ring_rdaddr, clr_ring_wradr

4.17 Comparator Delay Registers
write & read

BB10 0060 COMP_DLY0
BB10 0062 COMP_DLY1
BB10 0064 COMP_DLY2
BB10 0066 COMP_DLY3
BB10 0068 COMP_DLY4
BB10 006A COMP_DLY5
BB10 006C COMP_DLY6
BB10 006E COMP_DLY7
The Delay register are used to delay data from the Reference Memory so that data from the
same address of a transmitting memory are compared to each other.
The transmitting memory can be either

• another SIM memory on the same board sending their data via a cable back to another
channel. CABLE LOOPBACK TEST

o delay= depends from cable length (=8x0.5bx for a 50cm cable)
• another SIM memory on a different board LINK TEST between 2 PSB boards
• a memory in the GCT LINK TEST GCT to GT

o delay = GCT_GT latency
See also ERROR COUNTERS below.

4.17.1 Programming Guideline for DELAYS
15 - 12 11 - 8 7 - 4 3 - 0
Delay C Delay B Delay A Delay= 0…3

Total Delay = Delay C + Delay B + Delay A + (0…3)
 -- DELAY =0 0000 0000 0000 0000
 -- DELAY =1 0000 0000 0000 0001
 -- DELAY =2 0000 0000 0000 0010
 -- DELAY =3 0000 0000 0000 0011
 -- DELAY =C+B+A+3 CCCC BBBB AAAA 0011

 31

 -- For DELAY <4 the bits 15-4 have to be =0 !!
 -- Bits 3,2 are always =0; are not decoded

4.18 Command Pulses
BB10 0070 PSB_CMD_PULSE write only
A data bit =1 generates a spurious pulse to start any action in the PSB chip.
Bit 15: start reference_mem at next orbit //Start Reference memory at begin of next orbit
Bit14: stop_rop_vme // stop ROP state machine = ‘stop run’
Bit13: start_rop_vme // start ROP state machine makíng and sending events
Bit12: Res_BC_error // reset BC error after startup and after BCRes_vme
Bit 11: Res_Evnr_vme // reset Event Number Counter per software
Bit 10: Res_Orbitnr_vme // reset Orbit Number Counter per software (not used)
Bit 9: BCRes_vme // BCRES per software (for test only)
Bit 8: L1Res_vme // simulate a L1Res (Resync) pulse

 // in chip design: ‘run_next_orbit(7:0)’ = start sim_spy7…0 at next orbit

Bit 7: start sim_spy7 at next orbit //Start Sim_Spy memory at begin of next orbit
Bit 6: start sim_spy6 at next orbit
Bit 5: start sim_spy5 at next orbit
Bit 4: start sim_spy4 at next orbit
Bit 3: start sim_spy3 at next orbit
Bit 2: start sim_spy2 at next orbit
Bit 1: start sim_spy1 at next orbit
Bit 0: start sim_spy0 at next orbit

4.19 Phase Counters for Serial data
read only 32 8bit-counters
BB10 0800 PHASE_CNTR_A0 // compares ph1-ph0 and ph0-pre3 of chann 0
BB10 0802 PHASE_CNTR_ A1 // compares ph1-ph0 and ph0-pre3 of chann 1
BB10 0804 PHASE_CNTR_A2
BB10 0806 PHASE_CNTR_A3
BB10 0808 PHASE_CNTR_A4
BB10 080A PHASE_CNTR_A5
BB10 080C PHASE_CNTR_A6
BB10 080E PHASE_CNTR_A7
BB10 0810 PHASE_CNTR_B0 // compares ph3-ph2 and ph2-1 of chann 0
BB10 0812 PHASE_CNTR_B1 // compares ph3-ph2 and ph2-1 of chann 1
BB10 0814 PHASE_CNTR_B2
BB10 0816 PHASE_CNTR_B3
BB10 0818 PHASE_CNTR_B4
BB10 081A PHASE_CNTR_B5
BB10 081C PHASE_CNTR_B6
BB10 081E PHASE_CNTR_B7 // compares ph3-ph2 and ph2-1 of chann 7

15 - 8 7 - 0
Phase Counter 10 Phase Counter 0p3 PHASE_CNTR_Ax
Phase Counter 32 Phase Counter 21 PHASE_CNTR_Bx

x = 0…7 = Channel number

 32

If the incoming data bit switches between two consecutive samples then a 8 bit Phase Counter
will be incremented. If a phase counter becomes ‘FF’ then counting stops, showing an
overflow. Reading of phase counters also clears their content.
Phase Counter A checks between sample pre3 and 0.
Phase Counter B checks between sample 0 and 1.
Phase Counter C checks between sample 1 and 2.
Phase Counter D checks between sample 2 and 3.
 /pre3 = sample 3 of preceding 12.5 ns tick
4.20 Phase Counters for parallel LVDS data
read only 32 words for 64 8bit-counters
BB10 0820 PHASE_CNTR_A0_3 // compares ph1-ph0 and ph0-pre3 of bits 0-3
BB10 0822 PHASE_CNTR_A4_7 // compares ph1-ph0 and ph0-pre3 of bits 4-7
BB10 0824 PHASE_CNTR_A8_11
BB10 0826 PHASE_CNTR_A12_15
BB10 0828 PHASE_CNTR_A16_19
BB10 082A PHASE_CNTR_A20_23
BB10 082C PHASE_CNTR_A24_27
BB10 082E PHASE_CNTR_A28_31
BB10 0830 PHASE_CNTR_A32_35
BB10 0832 PHASE_CNTR_A36_39
BB10 0834 PHASE_CNTR_A40_43
BB10 0836 PHASE_CNTR_A44_47
BB10 0838 PHASE_CNTR_A48_51
BB10 083A PHASE_CNTR_A52_55
BB10 083C PHASE_CNTR_A56_59
BB10 083E PHASE_CNTR_A60_63 // compares ph1-ph0 and ph0-pre3 of bits 60_63

BB10 0840 PHASE_CNTR_B0_3 // compares ph3-ph2 and ph2-1 of bits 0-3
BB10 0842 PHASE_CNTR_B4_7 // compares ph3-ph2 and ph2-1 of bits 4-7
BB10 0844 PHASE_CNTR_B8_11
BB10 0846 PHASE_CNTR_B12_15
BB10 0848 PHASE_CNTR_B16_19
BB10 084A PHASE_CNTR_B20_23
BB10 084C PHASE_CNTR_B24_27
BB10 084E PHASE_CNTR_B28_31
BB10 0850 PHASE_CNTR_B32_35
BB10 0852 PHASE_CNTR_B36_39
BB10 0854 PHASE_CNTR_B40_43
BB10 0856 PHASE_CNTR_B44_47
BB10 0858 PHASE_CNTR_B48_51
BB10 085A PHASE_CNTR_B52_55
BB10 085C PHASE_CNTR_B56_59
BB10 085E PHASE_CNTR_B60_63 // compares ph3-ph2 and ph2-1 of bits 60_63

4.21 PSB Status register
BB10 0860 PSB_STATUS read only
Bit 15- 5 unused
Bit 4: BC_error

 33

• =1 if the external BCRES signal and the BC-counter disagree. The length of the orbit
is defined by the MAX_BC_NUMBER content.

• BC_error appears always after the initial power-up or DCM(clock) reset, the first
external BCRES or after a BCRES_vme command.

• If BC_error becomes =1 during normal run then there are serious hardware problems,
due to instable electronics.

• It has to be cleared by the command pulse ‘Res_BC_error’ before starting a run.
• The ‘Res_BC_error’ pulse has to be sent at least 1 orbit after having loaded a new

value into the MAX_BC_NUMBER register.

Bit 3 -0 : encoded 4 bit status sent via FDL to the TCS Trigger Control board.

Bit3
Ready

Bit2
Busy

Bit1
Out_of_Sync

Bit0
Warning

Status of
PSB

0 0 0 0 Disconnected
0 0 0 1 Warning
0 0 1 0 Out_of_Sync error
0 0 1 1 ----
0 1 0 0 Busy
0 1 0 1 ---
0 1 1 0 ---
0 1 1 1 ---
1 0 0 0 Ready
1 0 0 1 ---
1 0 1 0 ---
1 0 1 1 ---
1 1 0 0 Error (not used by PSB)
1 1 0 1 ---
1 1 1 0 ---
1 1 1 1 Disconnected

Encoded Status of PSB board
The table agrees with the TCS Note.
4.22 ROP Status register
BB10 0862 ROP_STATUS read only

Bit 15: roc_is_idle // The ROC Readout Controller state machine is in idle mode
Bit 14: run_flag // 1= ROC is running when software sets the

// ROP SETUP register = B”….10” = PSB READY=1
// 0= either software or Bgo command has stopped
// the ROC readout controller to extract and send events

Bit 13: 0
Bit 12: out_of_sync // empty bits of readout FIFOs did not appear at same time
Bit 11: error // currently not implemented
Bit 10: warning // more than 75% of the readout FIFO has been filled
Bit 9: full_fifo // readout FIFOs are full error!!
Bit 8: empty(8) // empty bit of readout FIFO 8 (BC number)
Bit 7: empty(7) // empty bit of readout FIFO for channel 7
Bit 6: empty(6)
Bit 5: empty(5)
Bit 4: empty(4)

 34

Bit 3: empty(3)
Bit 2: empty(2)
Bit 1: empty(1)
Bit 0: empty(0) // empty bit of readout FIFO for channel 0

4.23 CHIP Identifier
BB10 0864 CHIP_ID read only
The 16 bit identifier is defined in the VHDL code for the PSB chip and cannot be changed by
software.
CHIPID = 8131 8= PSB board, 1=cardnr, 3 = PSB chip, 1=chipnr (only one psb chip per
board)
4.24 Version Number
BB10 0866 VERSION_NR read only
The 16 bit identifier is defined in the VHDL code for the PSB chip and cannot be changed by
software.
VERSION_NR = 0001….and higher
4.25 CHIP Identifier H
BB10 0868 CHIP_IDH read only
The 16 bit identifier is defined in the VHDL code for the PSB chip and cannot be changed by
software.
CHIPIDH = 0001 1= Global Trigger crate

4.26 ERROR COUNTERS
BB10 0870 ERROR_COUNTER0 -/r // REF to input of CH0
BB10 0872 ERROR_COUNTER1 -/r
BB10 0874 ERROR_COUNTER2 -/r
BB10 0876 ERROR_COUNTER3 -/r
BB10 0878 ERROR_COUNTER4 -/r
BB10 087A ERROR_COUNTER5 -/r
BB10 087C ERROR_COUNTER6 -/r
BB10 087E ERROR_COUNTER7 -/r // REF to input of CH7
BB10 0880 ERROR_COUNTER8 -/r // REF to CH0_mem
BB10 0882 ERROR_COUNTER9 -/r
BB10 0884 ERROR_COUNTER10 -/r
BB10 0886 ERROR_COUNTER11 -/r
BB10 0888 ERROR_COUNTER12 -/r
BB10 088A ERROR_COUNTER13 -/r
BB10 088C ERROR_COUNTER14 -/r
BB10 088E ERROR_COUNTER15 -/r // REF to CH7_mem

• Reading the Error Counters also clears the counters. Therefore before starting any tests all

counters should be read.
• The value “FFFF” shows a counter overflow since the last read access.
ERROR_COUNTER0…7 shows any difference between input data into this channel and the
reference data. The reference data are delayed by setting the COMP_DLY0…7 register so
that the input and reference data of the same bunch crossing will be compared. The common
BCRES signal is used to synchronize the data source electronics and the receiving PSB
channel to each other.

 35

ERROR_COUNTER8…15 shows any difference between the sending SIM0…7 memory and
the reference data.

Example: CH0 sends data from the SIM memory to backplane or/and to the transmitting
part of its serial link chip. Error Counter8 checks then if SIM0 and REF data agree.

5 PSB logic functions
5.1 Data Format of Channel Link
The table is defined for 5 bx per event. For normal events the record contains the parts for bx-
1, bx+0, bx+1 only.
Normal record length=24 x 3 +1 = 73
Debug record length = 24 x 5 +1 = 121
Transfer time: 73 x 25 ns = 1800 ns resp. 121x 25= 3025 ns per event for 40 MHz Channel
Link.

27-
24

23-
20

19-
16

15-12 11-8 7-4 3-0 Name Comment Example

I I I I I I I IDLE Between records 555AAAA
A 0 0 e e e e HEADER A EVNr(15:0) A000001
B 0 0 0 0 e e HEADER B EVNr(23:16) 0000000
C 0 0 bx-2 b b b HEADER C Bx_in_ev/bx of fifo C00E017
D 0 0 n n n n HEADER D Board identifier D00ABCD
1 0 0 d d d d A_data ch0 of bx-2
1 0 0 d d d d A_data ch1 of bx-2
1 0 0 d d d d A_data ch2 of bx-2
1 0 0 d d d d A_data ch3 of bx-2
1 0 0 d d d d A_data ch4 of bx-2
1 0 0 d d d d A_data ch5 of bx-2
1 0 0 d d d d A_data ch6 of bx-2
1 0 0 d d d d A_data ch7 of bx-2
1 0 0 d d d d B_data ch0 of bx-2
1 0 0 d d d d B_data ch1 of bx-2
1 0 0 d d d d B_data ch2 of bx-2
1 0 0 d d d d B_data ch3 of bx-2
1 0 0 d d d d B_data ch4 of bx-2
1 0 0 d d d d B_data ch5 of bx-2
1 0 0 d d d d B_data ch6 of bx-2
1 0 0 d d d d B_data ch7 of bx-2
E 0 0 000b b b b End of bx-2 Ring addr of B_data E000018
E 0 0 0 0 0 0 End of bx-2 E000000
E 0 0 0 0 0 0 End of bx-2 E000000
E 0 0 0 0 0 0 End of bx-2 E000000
A 0 0 e e e e HEADER A EVNr(15:0) A000001
B 0 0 0 0 e e HEADER B EVNr(23:16) 0000000
C 0 0 bx-1 b b b HEADER C Bx_in_ev/bx of fifo C00F019
D 0 0 n n n n HEADER D Board identifier D00ABCD
1 0 0 d d d d A_data ch0 of bx-1
1 0 0 d d d d A_data ch1 of bx-1
1 0 0 d d d d A_data ch2 of bx-1
1 0 0 d d d d A_data ch3 of bx-1
1 0 0 d d d d A_data ch4 of bx-1
1 0 0 d d d d A_data ch5 of bx-1
1 0 0 d d d d A_data ch6 of bx-1
1 0 0 d d d d A_data ch7 of bx-1
1 0 0 d d d d B_data ch0 of bx-1
1 0 0 d d d d B_data ch1 of bx-1

 36

1 0 0 d d d d B_data ch2 of bx-1
1 0 0 d d d d B_data ch3 of bx-1
1 0 0 d d d d B_data ch4 of bx-1
1 0 0 d d d d B_data ch5 of bx-1
1 0 0 d d d d B_data ch6 of bx-1
1 0 0 d d d d B_data ch7 of bx-1
E 0 0 000b b b b End of bx-1 Ring addr of B_data E00001A
E 0 0 0 0 0 0 End of bx-1 E000000
E 0 0 0 0 0 0 End of bx-1 E000000
E 0 0 0 0 0 0 End of bx-1 E000000
A 0 0 e e e e HEADER A EVNr(15:0) A000001
B 0 0 0 0 e e HEADER B EVNr(23:16) 0000000
C 0 0 bx+0 b b b HEADER C Bx_in_ev/bx of fifo C00001B
D 0 0 n n n n HEADER D Board identifier D00ABCD
1 0 0 d d d d A_data ch0 of bx+0
1 0 0 d d d d A_data ch1 of bx+0
1 0 0 d d d d A_data ch2 of bx+0
1 0 0 d d d d A_data ch3 of bx+0
1 0 0 d d d d A_data ch4 of bx+0
1 0 0 d d d d A_data ch5 of bx+0
1 0 0 d d d d A_data ch6 of bx+0
1 0 0 d d d d A_data ch7 of bx+0
1 0 0 d d d d B_data ch0 of bx+0
1 0 0 d d d d B_data ch1 of bx+0
1 0 0 d d d d B_data ch2 of bx+0
1 0 0 d d d d B_data ch3 of bx+0
1 0 0 d d d d B_data ch4 of bx+0
1 0 0 d d d d B_data ch5 of bx+0
1 0 0 d d d d B_data ch6 of bx+0
1 0 0 d d d d B_data ch7 of bx+0
E 0 0 000b b b b End of bx Ring addr of B_data E00001C
E 0 0 0 0 0 0 End of bx E000000
E 0 0 0 0 0 0 End of bx E000000
E 0 0 0 0 0 0 End of bx E000000
A 0 0 e e e e HEADER A EVNr(15:0) A000001
B 0 0 0 0 e e HEADER B EVNr(23:16) 0000000
C 0 0 bx+1 b b b HEADER C Bx_in_ev/bx of fifo C00101D
D 0 0 n n n n HEADER D Board identifier D00ABCD
1 0 0 d d d d A_data ch0 of bx+1
1 0 0 d d d d A_data ch1 of bx+1
1 0 0 d d d d A_data ch2 of bx+1
1 0 0 d d d d A_data ch3 of bx+1
1 0 0 d d d d A_data ch4 of bx+1
1 0 0 d d d d A_data ch5 of bx+1
1 0 0 d d d d A_data ch6 of bx+1
1 0 0 d d d d A_data ch7 of bx+1
1 0 0 d d d d B_data ch0 of bx+1
1 0 0 d d d d B_data ch1 of bx+1
1 0 0 d d d d B_data ch2 of bx+1
1 0 0 d d d d B_data ch3 of bx+1
1 0 0 d d d d B_data ch4 of bx+1
1 0 0 d d d d B_data ch5 of bx+1
1 0 0 d d d d B_data ch6 of bx+1
1 0 0 d d d d B_data ch7 of bx+1
E 0 0 000b b b b End of bx+1 Ring addr of B_data E00001E
E 0 0 0 0 0 0 End of bx+1 E000000
E 0 0 0 0 0 0 End of bx+1 E000000
E 0 0 0 0 0 0 End of bx+1 E000000
A 0 0 e e e e HEADER A EVNr(15:0) A000001

 37

B 0 0 0 0 e e HEADER B EVNr(23:16) 0000000
C 0 0 bx+2 b b b HEADER C Bx_in_ev/bx of fifo C00201F
D 0 0 n n n n HEADER D Board identifier D00ABCD
1 0 0 d d d d A_data ch0 of bx+2
1 0 0 d d d d A_data ch1 of bx+2
1 0 0 d d d d A_data ch2 of bx+2
1 0 0 d d d d A_data ch3 of bx+2
1 0 0 d d d d A_data ch4 of bx+2
1 0 0 d d d d A_data ch5 of bx+2
1 0 0 d d d d A_data ch6 of bx+2
1 0 0 d d d d A_data ch7 of bx+2
1 0 0 d d d d B_data ch0 of bx+2
1 0 0 d d d d B_data ch1 of bx+2
1 0 0 d d d d B_data ch2 of bx+2
1 0 0 d d d d B_data ch3 of bx+2
1 0 0 d d d d B_data ch4 of bx+2
1 0 0 d d d d B_data ch5 of bx+2
1 0 0 d d d d B_data ch6 of bx+2
1 0 0 d d d d B_data ch7 of bx+2
E 0 0 000b b b b End of bx+2 Ring addr of B_data E000020
E 0 0 0 0 0 0 End of bx+2 E000000
E 0 0 0 0 0 0 End of bx+2 E000000
E 0 0 0 0 0 0 End of bx+2 E000000
F F F F F F F END of RECORD FFFFFFF
I I I I I I I IDLE Between records 555AAAA

5.2 RESET LOGIC
L1Res:

• Clears FIFOs (derandomizing buffers)
L1Res either from backplane or from VME clears the FIFO content so that the ROC
Readout Controller stays in IDLE mode after having finished the current event.

5.3 ROP logic
• ROC State Machine cannot be reset, it returns always to IDLE state. ROC starts only

when FIFO is not empty and PSB is READY.

TTCrx receives BGo commands and sends them via the ROBUS to the boards.

TIM CHIP V1004, V1005 from July 2004
 The TIM board sends via the RO bus to all boards

• BGo commands from TTCrx or VME on TIM
• Monitoring Request Identifier

 38

• Test data that where loaded into the TIM register.

ROBUS BGO cmds Monitoring Tests
RDRQST 1 1 1 OR _STROBES
STROBE 2 0 0 1 TEST_STROBE
STROBE 1 0 1 0 MON_RQST_STROBE
STROBE 0 1 0 0 BGO_CMD_STROBE
BX 11 USER_MSG3 MON_RQST_ID 11 TEST 11
BX 10 USER_MSG2 MON_RQST_ID 10 TEST 10
BX 9 USER_MSG1 MON_RQST_ID 9 TEST 9
BX 8 USER_MSG0 MON_RQST_ID 8 TEST 8
BX 7 0 MON_RQST_ID 7 TEST 7
BX 6 STOP_RUN MON_RQST_ID 6 TEST 6
BX 5 START_RUN MON_RQST_ID 5 TEST 5
BX 4 RES_ORBITNR MON_RQST_ID 4 TEST 4
BX 3 HARD_RES MON_RQST_ID 3 TEST 3
BX 2 PRIVATE_ORBIT MON_RQST_ID 2 TEST 2
BX 1 PRIVATE_GAP MON_RQST_ID 1 TEST 1
BX 0 TEST_ENABLE MON_RQST_ID 0 TEST 0

5.4 VME access timing in PSB chip_V0012

• The PSB chip requires that WR_PSB, VADDR and VDATA are applied at least 1
tick=25ns before EN_PSB.

• EN_PSB must not be removed before NDTACK_PSB has been applied.
• New EN_PSB should not be applied until NDTACK_PSB has been removed.

Write into memory:
Begin of EN_PSB to begin of vme_we_spy (1T-puls): 3 ticks = 3 FF
Begin of EN_PSB to begin of NDTACK_PSB: 4 ticks = 4 FF
End of EN_PSB to end of NDTACK_PSB: 3 ticks = 3 FF

Read from Memory:
Begin of EN_PSB to begin of VDATA: 4 ticks = 4 FF
Begin of EN_PSB to begin of NDTACK_PSB: 6 ticks = 6 FF… (= 75 ns after data)
End of EN_PSB to end of VDATA: 1 ticks = 1 FF
End of EN_PSB to end of NDTACK_PSB: 3 ticks = 3 FF

Write into register:

Begin of EN_PSB to begin of write pulse (1T-puls): 3 ticks = 3 FF
Begin of EN_PSB to begin of NDTACK_PSB: 4 ticks = 4 FF
End of EN_PSB to end of NDTACK_PSB: 3 ticks = 3 FF

Read from register:
Begin of EN_PSB to begin of VDATA: 4 ticks = 4 FF
Begin of EN_PSB to begin of NDTACK_PSB: 6 ticks = 6 FF… (= 50 ns after data)
End of EN_PSB to end of NDTACK_PSB: 3 ticks=3 FF

Remark:
EN_PSB is delayed by an additional FF so that new VADDR and VDATA are really there

when needed. This delay increases the response time for NDTACK and VDATA by 25 ns.
All VME in- and output signals of the PSB chip are registered.
 Internal vme_wr is latched to keep it until end of internal (delayed) vme_en avoiding a

write pulse at end of vme cycle.

 39

6 Flowchart of XILINX-programming

The XILINX chips on PSB-card are programmed via VME-instructions, this programming
sequence has to happen every time after power up. There is no PROM on board for power-up-
programming! The following instructions should be implemented in the control software.

Start XILINX
progamming

Set
PROG XILx=1

Set PROG_XILx=0
and EN_XILx=1

INIT_XILx=0

?

Send
programmin
g data

DONE_XILx=1

?

NO

YES

NO

YES

NO

YES

End XILINX
progamming

Error in
XILINX

Sending programming data of
XILINX chip(s) on D0.
Programming data file comes
from XILINX software. Setup-
file has to implement these data
and send it via single- or
blocktransfer.

Checking errors during
programming of XILINX
chip(s).

Checking end of programming
data frames of XILINX
chip(s).

Command-register XILINX-
progr. („8“ single transfer)

Command-register XILINX-
progr. („8“ single transfer)

Status-register XILINX-
progr. („8“ single transfer)

Status-register XILINX-
progr. („8“ single transfer)

Status-register XILINX-
progr. („8“ single transfer)

XILINX-programmingdata
(„C“ single- or block transfer)

INIT_XILx=0

?

Set EN_XILx=0

Ending programming sequence
of XILINX chip(s).

Checking whether XILINX
chip(s) is (are) ready for
configuration.

Beginning of
configuration in enabled
XILINX chip(s).

 40

After the XILINX programming sequence all other VME-accesses on card are possible, e. g.
DPM-access or FIFO-access in XILINX chips and so on.

